Skip to main content
Log in

Specific Heat and Superfluid Density of 4He near T λ of a 33.6 nm Film Formed Between Si Wafers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report measurements of superfluid density and specific heat of a 33.6 nm film near the superfluid transition. The film is formed between two patterned and directly bonded silicon wafers. These measurements were undertaken with the primary purpose of understanding coupling and proximity effects in a situation when the film was in contact with helium in a larger confinement (Perron et al. in Nat. Phys. 6:499, 2010; Perron and Gasparini in Phys. Rev. Lett. 109:035302, 2012). However, these data are also relevant to issues of correlation-length finite-size scaling. This is the thinnest hard-wall confined film for which such scaling has been tested for the specific heat and superfluid density. One expects that at some small thickness such scaling should fail. We compare our results with previous data of helium in a similar confinement but at larger thickness. We find good agreement with scaling in regions where previous data scaled, and confirm the lack of scaling where previously reported. In our analysis we consider a native oxide growth between the etching and bonding steps of cell fabrication and its effect on our scaling analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.K. Perron, M.O. Kimball, K.P. Mooney, F.M. Gasparini, Nat. Phys. 6, 499 (2010)

    Article  Google Scholar 

  2. J.K. Perron, F.M. Gasparini, Phys. Rev. Lett. 109, 035302 (2012)

    Article  ADS  Google Scholar 

  3. M.E. Fisher, Critical phenomena, in Proceedings of the 51st “Enrico Fermi” Summer School, Varenna, Italy, ed. by M.S. Green (Academic Press, New York, 1971)

    Google Scholar 

  4. F.M. Gasparini, M.O. Kimball, K.P. Mooney, M. Diaz-Avila, Rev. Mod. Phys. 80, 1009 (2008)

    Article  ADS  Google Scholar 

  5. M.O. Kimball, K.P. Mooney, F.M. Gasparini, Phys. Rev. Lett. 92, 115301 (2004)

    Article  ADS  Google Scholar 

  6. V. Ambegaokar, B.I. Halperin, D.R. Nelson, E.D. Siggia, Phys. Rev. B 21, 1806 (1980)

    Article  ADS  Google Scholar 

  7. R. Schmolke, A. Wacker, V. Dohm, D. Frank, Physica B, Condens. Matter 165-166, 575 (1990)

    ADS  Google Scholar 

  8. I. Rhee, F.M. Gasparini, D.J. Bishop, Phys. Rev. Lett. 63, 410 (1989)

    Article  ADS  Google Scholar 

  9. I. Rhee, D.J. Bishop, A. Petrou, F.M. Gasparini, Rev. Sci. Instrum. 61, 1528 (1990)

    Article  ADS  Google Scholar 

  10. S. Mehta, M.O. Kimball, F.M. Gasparini, J. Low Temp. Phys. 114, 467 (1999)

    Article  ADS  Google Scholar 

  11. F.M. Gasparini, M.O. Kimball, S. Mehta, J. Low Temp. Phys. 125, 215 (2001)

    Article  ADS  Google Scholar 

  12. R.W. Hill, O.V. Lounasmaa, Philos. Mag. 2, 145 (1957)

    Article  ADS  Google Scholar 

  13. H. Kahn, C. Deeb, I. Chasiotis, A. Heuer, J. Microelectromech. Syst. 14, 914 (2005)

    Article  Google Scholar 

  14. M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, M. Ohwada, J. Appl. Phys. 68, 1272 (1990)

    Article  ADS  Google Scholar 

  15. T.-P. Chen, F.M. Gasparini, Phys. Rev. Lett. 40, 331 (1978)

    Article  ADS  Google Scholar 

  16. M.O. Kimball, S. Mehta, F.M. Gasparini, J. Low Temp. Phys. 121, 29 (2000)

    Article  ADS  Google Scholar 

  17. N. Schultka, E. Manousakis, Phys. Rev. Lett. 75, 2710 (1995)

    Article  ADS  Google Scholar 

  18. S. Mehta, F.M. Gasparini, Phys. Rev. Lett. 78, 2596 (1997)

    Article  ADS  Google Scholar 

  19. J.A. Lipa, D.R. Swanson, J.A. Nissen, Z.K. Geng, P.R. Williamson, D.A. Stricker, T.C.P. Chui, U.E. Israelsson, M. Larson, Phys. Rev. Lett. 84, 4894 (2000)

    Article  ADS  Google Scholar 

  20. M.O. Kimball, F.M. Gasparini, Phys. Rev. Lett. 86, 1558 (2001)

    Article  ADS  Google Scholar 

  21. D.S. Greywall, G. Ahlers, Phys. Rev. A 7, 2145 (1973)

    Article  ADS  Google Scholar 

  22. D.R. Nelson, J.M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977)

    Article  ADS  Google Scholar 

  23. J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)

    Article  ADS  Google Scholar 

  24. F.M. Gasparini, G. Agnolet, J.D. Reppy, Phys. Rev. B 29, 138 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF grants DMR-0605716 and DMR-1101189; The Cornell Nanoscale Science and Technology Facility, Project number 526-94; the Mark Diamond Research fund of the University at Buffalo, and internal university funding. We also thank the University at Buffalo’s College of Arts and Sciences Instrument shop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis M. Gasparini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perron, J.K., Gasparini, F.M. Specific Heat and Superfluid Density of 4He near T λ of a 33.6 nm Film Formed Between Si Wafers. J Low Temp Phys 171, 589–598 (2013). https://doi.org/10.1007/s10909-012-0795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0795-0

Keywords

Navigation