Skip to main content
Log in

Energy Spectrum of the 3D Velocity Field, Induced by Vortex Tangle

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A review of various exactly solvable models on the determination of the energy spectra E(k) of 3D-velocity field, induced by chaotic vortex lines is proposed. This problem is closely related to the sacramental question whether a chaotic set of vortex filaments can mimic the real hydrodynamic turbulence. The quantity \(\langle \mathbf{v(k)v(-k)}\rangle \) can be exactly calculated, provided that we know the probability distribution functional of vortex loops configurations. The knowledge of is identical to the full solution of the problem of quantum turbulence and, in general, is unknown. In the paper we discuss several models allowing to evaluate spectra in the explicit form. This cases include standard vortex configurations such as a straight line, vortex array and ring. Independent chaotic loops of various fractal dimension as well as interacting loops in the thermodynamic equilibrium also permit an analytical solution. We also describe the method of an obtaining the 3D velocity spectrum induced by the straight line perturbed with chaotic 1D Kelvin waves on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.K. Nemirovskii, Phys. Rev. B 57, 5972 (1998)

    Article  ADS  Google Scholar 

  2. L. Kondaurova, S.K. Nemirovskii, J. Low Temp. Phys. 138, 555 (2005)

    Article  ADS  Google Scholar 

  3. C. Nore, M. Abid, M.E. Brachet, Phys. Rev. Lett. 78, 3896 (1997)

    Article  ADS  Google Scholar 

  4. C. Nore, M. Abid, M.E. Brachet, Phys. Fluids 9, 2644 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. W.F. Vinen, Phys. Rev. B 61, 1410 (2000)

    Article  ADS  Google Scholar 

  6. B. Nowak, J. Schole, D. Sexty, T. Gasenzer, Phys. Rev. A 85, 043627 (2012)

    Article  ADS  Google Scholar 

  7. U. Frisch, Turbulence (Cambridge University Press, Cambridge, 1995)

    MATH  Google Scholar 

  8. A. Monin, A. Yaglom, Statistical Fluid Dynamics, vol. II (MIT, Cambridge, 1975)

    Google Scholar 

  9. S.R. Stalp, L. Skrbek, R.J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999)

    Article  ADS  Google Scholar 

  10. S.K. Nemirovskii, M. Tsubota, T. Araki, J. Low Temp. Phys. 126, 1535 (2002)

    Article  ADS  Google Scholar 

  11. D. Kivotides, C.F. Barenghi, D.C. Samuels, Phys. Rev. Lett. 87, 155301 (2001)

    Article  ADS  Google Scholar 

  12. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 83, 134509 (2011)

    Article  ADS  Google Scholar 

  13. S.K. Nemirovskii, Theor. Math. Phys. 141, 1452 (2004)

    Article  MATH  Google Scholar 

  14. S. Nemirovskii, L. Kondaurova, J. Low Temp. Phys. 156, 182 (2009). ISSN 0022-2291

    Article  ADS  Google Scholar 

  15. H. Kleinert, Gauge Fields in Condensed Matter Physics (World Scientific, Singapore, 1990)

    Google Scholar 

  16. S.F. Edwards, M. Warner, Philos. Mag. A 40, 257 (1979)

    Article  ADS  Google Scholar 

  17. E. Copeland, D. Haws, S. Holbraad, R. Rivers, Physica A 179, 507 (1991). ISSN 0378-4371

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Nemirovskii, Phys. Rep. (2012). doi:10.1016/j.physrep.2012.10.005

    Google Scholar 

  19. D. Kivotides, J.C. Vassilicos, D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001)

    Article  ADS  Google Scholar 

  20. V. L’vov, S. Nazarenko, O. Rudenko, J. Low Temp. Phys. 153, 140 (2008)

    Article  ADS  Google Scholar 

  21. V.S. L’vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76, 024520 (2007)

    Article  ADS  Google Scholar 

  22. N. Sasa, T. Kano, M. Machida, V.S. L’vov, O. Rudenko, M. Tsubota, Phys. Rev. B 84, 054525 (2011)

    Article  ADS  Google Scholar 

  23. L. Boué, R. Dasgupta, J. Laurie, V. L’vov, S. Nazarenko, I. Procaccia, Phys. Rev. B 84, 064516 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the grants N 10-08-00369 and N 10-02-00514 from the Russian Foundation of Basic Research, and by the grant from the President Federation on the State Support of Leading Scientific Schools NSh-6686.2012.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey K. Nemirovskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nemirovskii, S.K. Energy Spectrum of the 3D Velocity Field, Induced by Vortex Tangle. J Low Temp Phys 171, 504–510 (2013). https://doi.org/10.1007/s10909-012-0791-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0791-4

Keywords

Navigation