Skip to main content
Log in

Gradual Eddy-Wave Crossover in Superfluid Turbulence

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We revise the theory of superfluid turbulence near the absolute zero of temperature and suggest a differential approximation model for the energy fluxes in the k-space, ε HD(k) and ε KW(k), carried, respectively, by the collective hydrodynamic (HD) motions of quantized vortex lines and by their individual uncorrelated motions known as Kelvin waves (KW). The model predicts energy spectra of the HD and the KW components of the system, ℰHD(k) and ℰKW(k), which experience a smooth crossover between different regimes of motion over a finite range of scales. For an experimentally relevant range of Λ≡ln (/a) ( is the mean intervortex separation and a is the vortex core radius) between 10 and 15 the total energy flux ε=ε HD(k)+ε KW(k) and the total energy spectrum ℰ(k)=ℰHD(k)+ℰKW(k) are dominated by the HD motions for k<2/. In this region ℰ(k) follows the HD spectrum with constant energy flux εε HD=const.: ℰ(k) k −5/3 for smaller k and tends to equipartition of the HD energy ℰ(k) k 2 for larger k. This bottleneck accumulation of the energy spectrum is milder than the one predicted before in (L’vov et al. in Phys. Rev. B 76:024520, 2007) based on a model with sharp HD-KW transition. For Λ=15, it results in a prediction for the effective viscosity ν  ′≃0.004κ (κ is the circulation quantum) which is in a reasonable agreement with its experimental value in 4He low-temperature experiment ≈0.003κ (Walmsley et al. in Phys. Rev. Lett. 99:265302, 2007). For k>2/, the energy spectrum is dominated by the KW component: almost flux-less KW component close to the thermodynamic equilibrium, ℰ≈ℰKW≈const at smaller k and the KW cascade spectrum ℰ(k)→ℰKW(k) k −7/5 at larger k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. L’vov, S.V. Nazarenko, O. Rudenko, Phys. Rev. B 76, 024520 (2007)

    Article  ADS  Google Scholar 

  2. P.M. Walmsley, A.I. Golov, H.E. Hall, A.A. Levchenko, W.F. Vinen, Phys. Rev. Lett. 99, 265302 (2007)

    Article  ADS  Google Scholar 

  3. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 128, 167 (2002)

    Article  Google Scholar 

  4. W.F. Vinen, Phil. Trans. R. Soc. A 366(1877), 2925–2933 (2008). doi:10.1098/rsta.2008.0084

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Tsubota, arXiv:0806.2737 (2008)

  6. V.B. Eltsov, R. de Graaf, R. Hanninen, M. Krusius, R.E. Solntsev, V.S. L’vov, A.I. Golov, P.M. Walmsley, in Progress in Low Temperature Physics, vol. 16, ed. by M. Tsubota (Elsevier, Amsterdam, 2008), in press; also arXiv:0803.3225

    Google Scholar 

  7. S.N. Fisher, A.J. Hale, A.M. Guénault, G.R. Pickett, Phys. Rev. Lett. 86, 244 (2001)

    Article  ADS  Google Scholar 

  8. T. Araki, M. Tsubota, S.K. Nemirovskii, Phys. Rev. Lett. 89, 145301 (2002)

    Article  ADS  Google Scholar 

  9. S.R. Stalp, J.J. Niemela, W.F. Vinen, R.J. Donnelly, Phys. Fluids 14, 1377 (2002)

    Article  ADS  Google Scholar 

  10. R. Hänninen, R. Blaauwgeers, V.B. Eltsov, A.P. Finne, M. Krusius, E.V. Thuneberg, G.E. Volovik, Phys. Rev. Lett. 90, 225301 (2003)

    Article  ADS  Google Scholar 

  11. A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, G.E. Volovik, Nature 424, 1022 (2003)

    Article  ADS  Google Scholar 

  12. W.F. Vinen, M. Tsubota, A. Mitani, Phys. Rev. Lett. 91, 135301 (2003)

    Article  ADS  Google Scholar 

  13. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 95, 035302 (2005)

    Article  ADS  Google Scholar 

  14. V.B. Eltsov, A.P. Finne, R. Hänninen, J. Kopu, M. Krusius, M. Tsubota, E.V. Thuneberg, Phys. Rev. Lett. 96, 215302 (2006)

    Article  ADS  Google Scholar 

  15. D.I. Bradley, D.O. Clubb, S.N. Fisher, A.M. Guénault, R.P. Haley, C.J. Matthews, G.R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett. 96, 035301 (2006)

    Article  ADS  Google Scholar 

  16. V.B. Eltsov, A.I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V.S. L’vov, R.E. Solntsev, Phys. Rev. Lett. 99, 265301 (2007)

    Article  ADS  Google Scholar 

  17. P.-E. Roche, C.F. Barenghi, Euro Phys. Lett. 81, 36002 (2008)

    Article  ADS  Google Scholar 

  18. R.J. Donnelly, Quantized Vortices in He II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  19. C.F. Barenghi et al. (eds.), Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol. 571 (Springer, Berlin, 2001)

    MATH  Google Scholar 

  20. E.V. Kozik, B.V. Svistunov, Phys. Rev. B 77, 060502(R) (2008)

    Article  ADS  Google Scholar 

  21. E.V. Kozik, B.V. Svistunov, Phys. Rev. Lett. 92, 035301 (2004)

    Article  ADS  Google Scholar 

  22. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics: Fluid Mechanics (Pergamon, New York, 1987)

    MATH  Google Scholar 

  23. U. Frish, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  24. C. Leith, Phys. Fluids 10, 1409 (1967)

    Article  ADS  Google Scholar 

  25. C. Connaughton, S. Nazarenko, Phys. Rev. Lett. 92, 044501 (2004)

    Article  ADS  Google Scholar 

  26. S. Nazarenko, JETP Lett. 84, 585 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor S. L’vov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

L’vov, V.S., Nazarenko, S.V. & Rudenko, O. Gradual Eddy-Wave Crossover in Superfluid Turbulence. J Low Temp Phys 153, 140–161 (2008). https://doi.org/10.1007/s10909-008-9844-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-008-9844-0

Keywords

Navigation