Skip to main content
Log in

Critical Behavior of the Liquid Gas Transition of 4He Confined in a Silica Aerogel

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have studied 4He confined in a 95 % porosity silica aerogel in the vicinity of the bulk liquid gas critical point. Both thermodynamic measurements and light scattering experiments were performed to probe the effect of a quenched disorder on the liquid gas transition, in relation with the Random Field Ising Model (RFIM). We find that the hysteresis between condensation and evaporation present at lower temperatures disappears at a temperature T ch between 25 and 30 mK below the critical point. Slow relaxations are observed for temperatures slightly below T ch , indicating that some energy barriers, but not all, can be overcome. Above T ch , no density step is observed along the (reversible) isotherms, showing that the critical behavior of the equilibrium phase transition in presence of disorder, if it exists, is shifted to smaller temperatures, where it cannot be observed due to the impossibility to reach equilibrium. Above T ch , light scattering exhibits a weak maximum close to the pressure where the isotherm slope is maximal. This behavior can be accounted for by a simple model incorporating the compression of 4He close to the silica strands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F. Brochard, P.G. de Gennes, J. Phys. Lett. (Paris) 44, L785 (1983)

    Article  Google Scholar 

  2. A.P.Y. Wong, M.H.W. Chan, Phys. Rev. Lett. 65, 2567 (1990)

    Article  ADS  Google Scholar 

  3. C. Gabay, P.E. Wolf, L. Puech, Physica B 284, 97 (2000)

    Article  ADS  Google Scholar 

  4. T. Lambert, C. Gabay, L. Puech, P.E. Wolf, J. Low Temp. Phys. 134, 293 (2004)

    Article  ADS  Google Scholar 

  5. T. Herman, J. Day, J. Beamish, Phys. Rev. B 72, 184202 (2005)

    Article  ADS  Google Scholar 

  6. F. Bonnet, T. Lambert, B. Cross, L. Guyon, F. Despetis, L. Puech, P.E. Wolf, Europhys. Lett. 82, 56003 (2008)

    Article  ADS  Google Scholar 

  7. D.J. Tulimieri, J. Yoon, M.H.W. Chan, Phys. Rev. Lett. 82, 121 (1999)

    Article  ADS  Google Scholar 

  8. J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, J.D. Shore, Phys. Rev. Lett. 70, 3347 (1993)

    Article  ADS  Google Scholar 

  9. E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, G. Tarjus, Phys. Rev. Lett. 87, 055701 (2001)

    Article  ADS  Google Scholar 

  10. F. Detcheverry, E. Kierlik, M.L. Rosinberg, G. Tarjus, Phys. Rev. E 68, 061504 (2003)

    Article  ADS  Google Scholar 

  11. F. Detcheverry, E. Kierlik, M.L. Rosinberg, G. Tarjus, Langmuir 20, 8006 (2004)

    Article  Google Scholar 

  12. H. Rieger, A.P. Young, J. Phys. A 26, 5279 (1993)

    Article  ADS  Google Scholar 

  13. A.P.Y. Wong, S.B. Kim, W.I. Goldburg, M.H.W. Chan, Phys. Rev. Lett. 70, 954 (1993)

    Article  ADS  Google Scholar 

  14. Z. Zhuang, A.G. Casielles, D.S. Cannell, Phys. Rev. Lett. 77, 2969 (1996)

    Article  ADS  Google Scholar 

  15. M. Mezard, R. Monasson, Phys. Rev. B 50, 7199 (1994)

    Article  ADS  Google Scholar 

  16. F. Krzakala, F. Ricci-Tersenghi, L. Zdeborová, Phys. Rev. Lett. 104, 207208 (2010)

    Article  ADS  Google Scholar 

  17. Y.B. Melnichenko, G.D. Wignall, D.R. Cole, H. Frielinghaus, Phys. Rev. E 69, 057102 (2004)

    Article  ADS  Google Scholar 

  18. Y.B. Melnichenko, G.D. Wignall, D.R. Cole, H. Frielinghaus, J. Chem. Phys. 124, 204711 (2006)

    Article  ADS  Google Scholar 

  19. B. Cross, L. Puech, P.E. Wolf, J. Low Temp. Phys. 148, 903 (2007)

    Article  ADS  Google Scholar 

  20. H. Kierstead, Phys. Rev. A 7, 242 (1973)

    Article  ADS  Google Scholar 

  21. D.B. Roe, H. Meyer, J. Low Temp. Phys. 30, 91 (1978)

    Article  ADS  Google Scholar 

  22. D. Bonn, G.H. Wegdam, J. Phys. I (France) 2, 1755 (1992)

    Article  Google Scholar 

  23. M.E. Fisher, P.G. de Gennes, C.R. Acad. Sci. Paris Ser. B 287, 207 (1978)

    Google Scholar 

  24. P.E. Wolf, F. Bonnet, L. Guyon, T. Lambert, S. Perraud, L. Puech, B. Rousset, P. Thibault, Eur. Phys. J. E, Soft Matter 28, 183 (2009)

    Article  Google Scholar 

  25. W.F. Saam, M.W. Cole, Phys. Rev. B 11, 1086 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubry, G.J., Bonnet, F., Melich, M. et al. Critical Behavior of the Liquid Gas Transition of 4He Confined in a Silica Aerogel. J Low Temp Phys 171, 670–676 (2013). https://doi.org/10.1007/s10909-012-0740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0740-2

Keywords

Navigation