Skip to main content
Log in

Relaxation Rates and Collision Integrals for Bose-Einstein Condensates

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Near equilibrium, the rate of relaxation to equilibrium and the transport properties of excitations (bogolons) in a dilute Bose-Einstein condensate (BEC) are determined by three collision integrals, , , and . All three collision integrals conserve momentum and energy during bogolon collisions, but only conserves bogolon number. Previous works have considered the contribution of only two collision integrals, and . In this work, we show that the third collision integral makes a significant contribution to the bogolon number relaxation rate and needs to be retained when computing relaxation properties of the BEC. We provide values of relaxation rates in a form that can be applied to a variety of dilute Bose-Einstein condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975)

    MATH  Google Scholar 

  2. E.D. Gust, L.E. Reichl, Phys. Rev. E 79, 031202 (2009)

    Article  ADS  Google Scholar 

  3. L.E. Reichl, A Modern Course in Statistical Physics, (Wiley-VCH, Mannheim, 2009)

    Google Scholar 

  4. E.A. Uehling, G.E. Uhlenbeck, Phys. Rev. 43, 552 (1933)

    Article  ADS  Google Scholar 

  5. E.D. Gust, L.E. Reichl, Phys. Rev. E 81, 061202 (2010)

    Article  ADS  Google Scholar 

  6. T.R. Kirkpatrick, J.R. Dorfman, J. Low Temp. Phys. 58, 301 (1985)

    Article  ADS  Google Scholar 

  7. T.R. Kirkpatrick, J.R. Dorfman, J. Low Temp. Phys. 58, 399 (1985)

    Article  ADS  Google Scholar 

  8. T.R. Kirkpatrick, J.R. Dorfman, J. Low Temp. Phys. 59, 1 (1985)

    Article  ADS  Google Scholar 

  9. M.J. Bijlsma, E. Zaremba, H.T.C. Stoof, Phys. Rev. A 62, 063609 (2000)

    Article  ADS  Google Scholar 

  10. E. Zaremba, T. Nikuni, A. Griffin, J. Low Temp. Phys. 116, 277 (1999)

    Article  Google Scholar 

  11. A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperatures (Cambridge University Press, Cambridge, 2009)

    Book  MATH  Google Scholar 

  12. E.D. Gust, L.E. Reichl, e-print arXiv:1202.3418 (2012)

  13. P.B. Blakie, A.S. Bradley, M.J. Davis, R.J. Ballagh, C.W. Gardiner, Adv. Phys. 57, 363 (2008)

    Article  ADS  Google Scholar 

  14. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (Dover, New York, 2003), pp. 314–319

    Google Scholar 

  15. E.A. Frieman, J. Math. Phys. 4, 410 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. S. Peletminskii, A. Yatsenko, Sov. Phys. JETP 26, 773 (1968)

    ADS  Google Scholar 

  17. A.I. Akhiezer, S.V. Peletminskii, Methods of Statistical Physics (Pergamon, Oxford, 1981)

    Google Scholar 

  18. I. Kuščer, M.M.R. Williams, Phys. Fluids 10, 1922 (1967)

    Article  ADS  Google Scholar 

  19. V.N. Popov, Functional Integrals and Collective Modes (Cambridge University Press, New York, 1987)

    Google Scholar 

  20. R.J. Dodd, M. Edwards, C.W. Clark, K. Burnett, Phys. Rev. A 57, R32 (1998)

    Article  ADS  Google Scholar 

  21. D.A. Hutchinson, E. Zaremba, A. Griffin, Phys. Rev. Lett. 78, 1842 (1997)

    Article  ADS  Google Scholar 

  22. K. Burnett in Bose-Einstein Condensation in Atomic Gases, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Washington, D.C., 1999), pp. 273–283

    Google Scholar 

  23. S.A. Gardiner, S.A. Morgan, Phys. Rev. A 75, 043621 (2007)

    Article  ADS  Google Scholar 

  24. M.H. Anderson, J.R. Ensher, M.R. Mathews, C.E. Weiman, E.A. Cornell, Science 269, 198 (1995)

    Article  ADS  Google Scholar 

  25. D.J. Heinzen in Bose-Einstein Condensation in Atomic Gases, ed. by M. Inguscio, S. Stringari, C.E. Wieman (IOS Press, Washington, D.C., 1999), p. 385

    Google Scholar 

  26. B. Shizgal, Can. J. Phys. 62, 97 (1984)

    Article  ADS  Google Scholar 

  27. D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software (Prentice-Hall, Englewood Cliffs, 1989), pp. 153–157

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Robert A. Welch Foundation (Grant No. F-1051) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich D. Gust.

Appendix: The Form of the Kernels Used in Computation

Appendix: The Form of the Kernels Used in Computation

To calculate the values of the kernel K l (c 1,c 2) in Eq. (35), we split the calculation into six parts, one for each of the individual kernels in Eqs. (25)–(28). In this appendix, we show how to obtain an expression that is well-suited to numerical quadrature for the kernel \(Q_{A}^{l}(c_{1}, c_{2})\). Similar procedures can be used with the other five kernels as well. We begin with the definition

(49)

First let us perform the integration over c 4,

(50)

The resulting integrand only depends on the magnitude of c 4, where c 4=|c 1+c 2c 3|. We now perform the integration over c 3 in spherical coordinates, with the z-axis oriented parallel to c 1+c 2,

(51)

Now notice that our choice of spherical coordinates for the c 3 integration allows us to write c 4 as \(c_{4}=\sqrt{|\mathbf{c}_{1} + \mathbf{c}_{2}|^{2} + c_{3}^{2} - 2 c_{3} |\mathbf{c}_{1} + \mathbf{c}_{2}| z_{3}}\). We can change variables to write the z 3 integration as an integration over c 4 with \(d c_{4} = -\frac{2 c_{3} |\mathbf{c}_{1} + \mathbf{c}_{2}|}{2 c_{4}} d z_{3}\),

(52)

Since the integrand now only depends on c 1, c 2 and \(\hat{\mathbf{c}}_{1} \cdot \hat{\mathbf{c}}_{2}\), let us define \(c_{A} = \sqrt{c_{1}^{2} + c_{2}^{2} + 2 c_{1} c_{2} (\hat{\mathbf{c}}_{1} \cdot \hat{\mathbf{c}}_{2})}\) and use c A as a change of variables for the \(\hat{\mathbf{c}}_{1} \cdot \hat{\mathbf{c}}_{2}\) integration. This results in

(53)

To handle the integration over c A , we write the integration limits in terms of Heaviside theta functions,

(54)

and notice that

$$ \theta\bigl(|c_A - c_3| \leq c_4 \leq c_A + c_3\bigr) = \theta\bigl(|c_3 - c_4| \leq c_A \leq c_3 + c_4\bigr). $$
(55)

This allows us to move the c A integration through all of the others and write

(56)

where

$$ w^l_{1,2,3,4} = \int_{\max[|c_1 - c_2|, |c_3 - c_4|]}^{\min[c_1 + c_2, c_3 + c_4]} d c_A P_l\biggl(\frac{c_A^2 - c_1^2 - c_2^2}{2 c_1 c_2}\biggr). $$
(57)

The final delta function of energy can now be handled in several ways, but each of them will lead to a well-behaved integrand. Still, we can make a few observations that will help the quadrature go faster.

First, notice that the range of integration on c 3 must satisfy . This corresponds to . In fact, the symmetry between c 3 and c 4 shows that the whole integral is equal to twice the integral from 0≤c 3c h where . Also, since it is symmetric in c 1 and c 2, we can assume that c 1>c 2 in Eq. (57) and swap c 1 and c 2 if c 2>c 1.

Analysis of the function \(w^{0}_{1,2,3,4}\) shows that under the constraint that , \(w^{0}_{1,2,3,4} = 2 \min[c_{1}, c_{2}, c_{3}, c_{4}]\). This is only generally true for \(Q_{A}^{l}\) and not the other kernels. Furthermore, \(w^{l}_{1,2,3,4}\) for l≥1 can always be written as the product of \(w^{0}_{1,2,3,4}\) and another finite function. The integrand will therefore always have a discontinuity of its derivative when c 3=c 2, and the integration region should be split at this point.

With all of these considerations, we finally write the best form as

(58)

where c 4 takes the value that makes . Three of the other kernels (Q B , Q C , R A ) can be similarly reduced to a single integration with a well-behaved integrand, while the other two (T A , T B ) can be reduced to explicit functions of c 1 and c 2.

A final point concerning the kernels involves the function \(R_{A}^{0}(c_{1}, c_{2})\). Though this function is undefined when c 1=c 2, integrals over the entire kernel K l (c 1,c 2) still converge. In the numerical method of Sect. (6), we use the fact that acting alone conserves bogolon number to determine the values of \(R_{A}^{0}(c_{1}, c_{1})\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gust, E.D., Reichl, L.E. Relaxation Rates and Collision Integrals for Bose-Einstein Condensates. J Low Temp Phys 170, 43–59 (2013). https://doi.org/10.1007/s10909-012-0675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0675-7

Keywords

Navigation