Skip to main content
Log in

The Effect of Magnetic Field on a Quantum Rod Qubit

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Hamiltonian of a quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation, which changes the ellipsoidal boundary into a spherical one. We then study the eigenenergies and eigenfunctions of the ground and the first excited states of an electron strongly coupled to the LO-phonon in the QR under a magnetic field. The present system may be used as a two-level qubit. When the electron is in the superposition state of the ground and the first excited states, we obtained the time evolution of the electron probability density oscillating in the QR. It is found that the magnitude of the probability density is increased by the magnetic field, whereas it decreases the oscillation period of the probability density. The oscillation period is a increasing function of the ellipsoid aspect ratio, the transverse and longitudinal effective confinement lengths of the QR, but a decreasing one of the electron-phonon coupling strength and the cyclotron frequency of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Sikorski, U. Merkt, Phys. Rev. Lett. 62, 2164 (1989)

    Article  ADS  Google Scholar 

  2. A. Lorke, J.P. Kotthaus, K. Ploog, Phys. Rev. Lett. 64, 2559 (1990)

    Article  ADS  Google Scholar 

  3. S. Normura, T. Kobayashi, Phys. Rev. B 45, 1305 (1992)

    Article  ADS  Google Scholar 

  4. S.S. Li, J.B. Xia, J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  5. S.S. Li, J.B. Xia, Chin. Phys. 16, 0001 (2007)

    Article  ADS  Google Scholar 

  6. F. Chi, S.S. Li, J. Appl. Phys. 99, 043705 (2006)

    Article  ADS  Google Scholar 

  7. J.K. Sun, H.J. Li, J.L. Xiao, Superlattices Microstruct. 46, 476 (2009)

    Article  ADS  Google Scholar 

  8. L. Fedichkin, A. Fedorov, Phys. Rev. A 69, 032311 (2004)

    Article  ADS  Google Scholar 

  9. S.S. Li, J.B. Xia, J.L. Liu, F.H. Yang, Z.C. Niu, S.L. Feng, H.Z. Zheng, J. Appl. Phys. 90, 6151 (2001)

    Article  ADS  Google Scholar 

  10. G.S. Jin, Ahmadliz, S.S. Li, Z.C. Niu, F.H. Yang, S.L. Feng, Physics 31, 773 (2002)

    Google Scholar 

  11. S.S. Li, G.L. Long, F.S. Bai, S.L. Feng, H.Z. Zheng, Proc. Natl. Acad. Sci. USA 98, 11847 (2001)

    Article  ADS  Google Scholar 

  12. W.P. Li, J.W. Yin, Y.F. Yu, Z.W. Wang, J.L. Xiao, J. Low Temp. Phys. 160, 112 (2010)

    Article  ADS  Google Scholar 

  13. G. Sek, P. Podemski, J. Misiewicz, L.H. Li, A. Fiore, G. Patriarche, Appl. Phys. Lett. 92, 021901 (2008)

    Article  ADS  Google Scholar 

  14. L.H. Li, G. Patriarche, A. Fiore, J. Appl. Phys. 104, 113522 (2008)

    Article  ADS  Google Scholar 

  15. B. Bruhn, J. Valenta, J. Linnros, Nanotechnology 20, 505301 (2009)

    Article  Google Scholar 

  16. M.B. Lundeberg, M.R.A. Shegelski, Can. J. Phys. 84, 19 (2006)

    Article  ADS  Google Scholar 

  17. Z.X. Sun, I. Swart, C. Delerue, D. Vanmaekelbergh, P. Liljeroth, Phys. Rev. Lett. 102, 196401 (2009)

    Article  ADS  Google Scholar 

  18. J.L. Xiao, C.L. Zhao, Superlattices Microstruct. 49, 9 (2011)

    Article  ADS  Google Scholar 

  19. X.Z. Li, J.B. Xia, Phys. Rev. B 66, 115316 (2002)

    Article  ADS  Google Scholar 

  20. Z.W. Wang, J.L. Xiao, Acta Phys. Sin. 56, 0678 (2007)

    Google Scholar 

Download references

Acknowledgement

This project was supported by the National Science Foundation of China under Grant No. 10964005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hua Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Ding, ZH. & Xiao, JL. The Effect of Magnetic Field on a Quantum Rod Qubit. J Low Temp Phys 166, 268–278 (2012). https://doi.org/10.1007/s10909-011-0453-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0453-y

Keywords

Navigation