Skip to main content
Log in

Antiferromagnetism of Lattice Fermions in an Optical Trap: the Dynamical Mean-Field Perspective

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A major current goal in experiments on ultracold fermions on optical lattices is the realization and detection of quantum magnetism, in particular of antiferromagnetic order. Numerical simulations are expected to be essential both for guidance and for the interpretation of the experimental data.

We present theoretical predictions for antiferromagnetic signatures in the double occupancy, discuss the intrinsic energy scales and the role of dimensionality for magnetism, and show that the dynamical mean-field theory (DMFT) is surprisingly accurate for local observables in three and two dimensions. The local density approximation is demonstrated, by comparison with real-space DMFT, to be insufficient for ordered systems. In contrast, our slab approximation opens the way to accurate and efficient quantitative simulations of trapped anisotropic fermionic clouds of the experimentally relevant sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Buluta, F. Nori, Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  2. W. Hofstetter, J.I. Cirac, P. Zoller, E. Demler, M.D. Lukin, Phys. Rev. Lett. 89, 220407 (2002)

    Article  ADS  Google Scholar 

  3. D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)

    Article  ADS  MATH  Google Scholar 

  4. T. Esslinger, Ann. Rev. Condens. Matter Phys. 1, 129 (2010)

    Article  ADS  Google Scholar 

  5. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, Nature 455, 204 (2008)

    Article  ADS  Google Scholar 

  6. U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch, T.A. Costi, R.W. Helmes, D. Rasch, A. Rosch, Science 322, 1520 (2008)

    Article  ADS  Google Scholar 

  7. L. De Leo, C. Kollath, A. Georges, M. Ferrero, O. Parcollet, Phys. Rev. Lett. 101, 210403 (2008)

    Article  Google Scholar 

  8. S. Wessel, Phys. Rev. B 81, 052405 (2010)

    Article  ADS  Google Scholar 

  9. R. Jördens, L. Tarruell, D. Greif, T. Uehlinger, N. Strohmaier, H. Moritz, T. Esslinger, L. De Leo, C. Kollath, A. Georges, V. Scarola, L. Pollet, E. Burovski, E. Kozik, M. Troyer, Phys. Rev. Lett. 104, 180401 (2010)

    Article  Google Scholar 

  10. E. Altman, E. Demler, M.D. Lukin, Phys. Rev. A 70, 013603 (2004)

    Article  ADS  Google Scholar 

  11. T.A. Corcovilos, S.K. Baur, J.M. Hitchcock, E.J. Mueller, R.G. Hulet, Phys. Rev. A 81, 013415 (2010)

    Article  ADS  Google Scholar 

  12. E.V. Gorelik, I. Titvinidze, W. Hofstetter, M. Snoek, N. Blümer, Phys. Rev. Lett. 105, 065301 (2010)

    Article  ADS  Google Scholar 

  13. C. Kollath, A. Iucci, I.P. McCulloch, T. Giamarchi, Phys. Rev. A 74, 041604(R) (2006)

    Article  ADS  Google Scholar 

  14. D. Greif, L. Tarruell, T. Uehlinger, R. Jördens, T. Esslinger, Phys. Rev. Lett. 106, 145302 (2011)

    Article  ADS  Google Scholar 

  15. Z. Xu, S. Chiesa, S. Yang, S.-Q. Su, D.E. Sheehy, J. Moreno, R.T. Scalettar, M. Jarrell, arXiv:1104.1739 (2011)

  16. S. Trotzky, Y.-A. Chen, U. Schnorrberger, P. Cheinet, I. Bloch, Phys. Rev. Lett. 105, 265303 (2010)

    Article  ADS  Google Scholar 

  17. K.G.L. Pedersen, B.M. Andersen, G.M. Bruun, O.F. Syljuasen, A.S. Sorensen, arXiv:1105.4466 (2011)

  18. F. Aryasetiawan, K. Karlsson, O. Jepsen, U. Schönberger, Phys. Rev. B 74, 125106 (2006)

    Article  ADS  Google Scholar 

  19. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Kotliar, D. Vollhardt, Phys. Today 57, 53 (2004)

    Article  Google Scholar 

  21. J. Hirsch, R. Fye, Phys. Rev. Lett. 56, 2521 (1986)

    Article  ADS  Google Scholar 

  22. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  23. K. Held, I.A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A.K. McMahan, R.T. Scalettar, Th. Pruschke, V.I. Anisimov, D. Vollhardt, Phys. Status Solidi (b). Basic Solid State Phys. 243, 2599 (2006)

    Article  ADS  Google Scholar 

  24. N. Blümer, Ph.D. thesis, Universität Augsburg (2002)

  25. C. Knecht, N. Blümer, P. van Dongen, Phys. Rev. B 72, 081103(R) (2005)

    Article  ADS  Google Scholar 

  26. N. Blümer, Phys. Rev. B 76, 205120 (2007)

    Article  ADS  Google Scholar 

  27. R. Blankenbecler, D. Scalapino, R. Sugar, Phys. Rev. D 24, 2278 (1981)

    Article  ADS  Google Scholar 

  28. E.V. Gorelik, Th. Paiva, R. Scalettar, A. Klümper, N. Blümer, arXiv:1105.3356

  29. W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 74 (2009)

    Article  ADS  Google Scholar 

  30. F. Werner, O. Parcollet, A. Georges, S.R. Hassan, Phys. Rev. Lett. 95, 056401 (2005)

    Article  ADS  Google Scholar 

  31. A.-M. Daré, L. Raymond, G. Albinet, A.-M.S. Tremblay, Phys. Rev. B 76, 064402 (2007)

    Article  ADS  Google Scholar 

  32. M. Takahashi, J. Phys. C 10, 1289–7301 (1977)

    Article  ADS  Google Scholar 

  33. M. Kollar, M. Eckstein, K. Byczuk, N. Blümer, P. van Dongen, M.H. Radke De Cuba, W. Metzner, D. Tanasković, V. Dobrosavljević, G. Kotliar, D. Vollhardt, Ann. Phys. (Leipz.) 14, 642 (2005)

    Article  ADS  MATH  Google Scholar 

  34. Th. Paiva, R. Scalettar, M. Randeria, N. Trivedi, Phys. Rev. Lett. 104, 066406 (2010)

    Article  ADS  Google Scholar 

  35. S. Fuchs, E. Gull, L. Pollet, E. Burovski, E. Kozik, Th. Pruschke, M. Troyer, Phys. Rev. Lett. 106, 030401 (2011)

    Article  ADS  Google Scholar 

  36. T. Maier, M. Jarrell, T. Pruschke, M. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  37. R. Staudt, M. Dzierzawa, A. Muramatsu, Eur. Phys. J. B 17, 411 (2000)

    Article  ADS  Google Scholar 

  38. P.R.C. Kent, M. Jarrell, T.A. Maier, Th. Pruschke, Phys. Rev. B 72, 060411(R) (2005)

    ADS  Google Scholar 

  39. L. De Leo, J. Bernier, C. Kollath, A. Georges, V.W. Scarola, Phys. Rev. A 83, 023606 (2011)

    Article  ADS  Google Scholar 

  40. G. Jüttner, A. Klümper, J. Suzuki, Nucl. Phys. B 522, 471 (1998)

    Article  ADS  Google Scholar 

  41. N. Blümer, E.V. Gorelik, Comput. Phys. Commun. 118, 115 (2011)

    Article  ADS  Google Scholar 

  42. M. Snoek, I. Titvinidze, C. Töke, K. Byczuk, W. Hofstetter, New J. Phys. 10, 093008 (2008)

    Article  ADS  Google Scholar 

  43. R.W. Helmes, T.A. Costi, A. Rosch, Phys. Rev. Lett. 100, 056403 (2008)

    Article  ADS  Google Scholar 

  44. E. Khatami, M. Rigol, arXiv:1104.5494 (2011)

  45. S. Chiesa, Ch.N. Varney, M. Rigol, R.T. Scalettar, Phys. Rev. Lett. 106, 035301 (2011)

    Article  ADS  Google Scholar 

  46. N. Blümer, E. Kalinowski, Physica B 359–361, 648 (2005)

    Article  Google Scholar 

  47. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Gorelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelik, E.V., Blümer, N. Antiferromagnetism of Lattice Fermions in an Optical Trap: the Dynamical Mean-Field Perspective. J Low Temp Phys 165, 195–212 (2011). https://doi.org/10.1007/s10909-011-0396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-011-0396-3

Keywords

Navigation