Skip to main content

Magnetic and Electronic Quantum Criticality in YbRh2Si2

Abstract

The unconventional nature of the quantum criticality in YbRh2Si2 is highlighted on the basis of magnetoresistivity and susceptibility measurements. Results obtained under chemical pressure realized by isoelectronic substitution on the rhodium site are presented. These results illustrate the position of the T-line associated with a breakdown of the Kondo effect near the antiferromagnetic instability in the low-temperature phase diagram. Whereas at zero temperature the Kondo breakdown and the antiferromagnetic quantum critical point coincide in the proximity of the stoichiometric compound, they are seen to be detached under chemical pressure: For positive chemical pressure the magnetically ordered phase extends beyond the T (B)-line. For sufficiently high negative pressure the T (B)-line is separated from the magnetically ordered phase. From our detailed analysis we infer that the coincidence is retained at small iridium concentrations, i.e., at small negative chemical pressure. We outline further measurements which may help to clarify the detailed behavior of the two instabilities.

References

  1. Special issue: Quantum criticality and novel phases (QCNP 2009). Phys. Status Solidi B 247, 457–764 (2010)

    Google Scholar 

  2. P. Gegenwart, Q. Si, F. Steglich, Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008)

    Article  Google Scholar 

  3. S. Doniach, The Kondo lattice and weak antiferromagnetism. Physica B+C 91, 231–234 (1977)

    Article  ADS  Google Scholar 

  4. J.A. Hertz, Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976)

    Article  ADS  Google Scholar 

  5. A.J. Millis, Effect of a nonzero temperature on quantum critical-points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993)

    Article  ADS  Google Scholar 

  6. T. Moriya, T. Takimoto, Anomalous properties around magnetic instability in heavy electron systems. J. Phys. Soc. Jpn. 64, 960–969 (1995)

    Article  ADS  Google Scholar 

  7. Q. Si, M.S. Rabello, K. Ingersent, J.L. Smith, Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001)

    Article  ADS  Google Scholar 

  8. P. Coleman, C. Pépin, Q. Si, R. Ramazashvili, How do Fermi liquids get heavy and die? J. Phys., Condens. Matter 13, R723–R738 (2001)

    Article  ADS  Google Scholar 

  9. T. Senthil, S. Sachdev, M. Vojta, Fractionalized Fermi liquids. Phys. Rev. Lett. 90, 216403 (2003)

    Article  ADS  Google Scholar 

  10. C. Pépin, Kondo breakdown as a selective Mott transition in the Anderson lattice. Phys. Rev. Lett. 98, 206401 (2007)

    Article  ADS  Google Scholar 

  11. U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, Z. Fisk, Energy scales of Lu1−x Yb x Rh2Si2 by means of thermopower investigations. Phys. Rev. B 77, 104412 (2008)

    Article  ADS  Google Scholar 

  12. O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F.M. Grosche, P. Gegenwart, M. Lang, G. Sparn, F. Steglich, YbRh2Si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000)

    Article  ADS  Google Scholar 

  13. P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, Q. Si, Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007)

    Article  ADS  Google Scholar 

  14. S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004)

    Article  ADS  Google Scholar 

  15. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 89, 056402 (2002)

    Article  ADS  Google Scholar 

  16. J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, P. Coleman, The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003)

    Article  ADS  Google Scholar 

  17. N. Tsujii, K. Yoshimura, K. Kosuge, Deviation from the Kadowaki-Woods relation in Yb-based intermediate-valence systems. J. Phys., Condens. Matter 15, 1993–2003 (2003)

    Article  ADS  Google Scholar 

  18. A.C. Jacko, J.O. Fjaerestad, B.J. Powell, A unified explanation of the Kadowaki-Woods ratio in strongly correlated metals. Nat. Phys. 5, 422–425 (2009)

    Article  Google Scholar 

  19. P. Coleman, J.B. Marston, A.J. Schofield, Transport anomalies in a simplified model for a heavy-electron quantum critical point. Phys. Rev. B 72, 245111 (2005)

    Article  ADS  Google Scholar 

  20. S. Hartmann, N. Oeschler, C. Krellner, C. Geibel, S. Paschen, F. Steglich, Thermopower evidence for an abrupt Fermi surface change at the quantum critical point of YbRh2Si2. Phys. Rev. Lett. 104, 096401 (2010)

    Article  ADS  Google Scholar 

  21. S. Friedemann, T. Westerkamp, M. Brando, N. Oeschler, S. Wirth, P. Gegenwart, C. Krellner, C. Geibel, F. Steglich, Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2. Nat. Phys. 5, 465–469 (2009)

    Article  Google Scholar 

  22. C.M. Hurd, The Hall Effect in Metals and Alloys (Plenum, New York, 1972)

    Google Scholar 

  23. S. Friedemann, N. Oeschler, C. Krellner, C. Geibel, S. Wirth, F. Steglich, S. Paschen, S. MaQuilon, Z. Fisk, G. Zwicknagl, Hall effect measurements on YbRh2Si2 in the light of electronic structure calculations. arXiv:0803.4428v1 (2008)

  24. S. Friedemann, N. Oeschler, C. Krellner, C. Geibel, F. Steglich, Quantum criticality in Yb(Rh0.97Co0.03)2Si2 probed by low-temperature resistivity. J. Phys., Conf. Ser. 100, 012038 (2010)

    Article  ADS  Google Scholar 

  25. F. Weickert, Quantenkritisches Verhalten in hochkorrelierten Elektronensystemen. Ph.D. dissertation, Technische Universität Dresden (2006)

  26. J. Custers, Quantum critical behavior in the heavy fermion compounds YbRh2Si2 and CeIn3−x Sn x . Ph.D. dissertation, Technical University Dresden (2004)

  27. P. Schlottmann, Bethe-ansatz solution of the ground-state of the SU(2j+1) Kondo (Coqblin-Schrieffer) model: magnetization, magnetoresistance and universality. Z. Phys. B, Condens. Matter 51, 223–235 (1983)

    Article  ADS  Google Scholar 

  28. S. Mederle, R. Borth, C. Geibel, F.M. Grosche, G. Sparn, O. Trovarelli, F. Steglich, An unconventional metallic state in YbRh2(Si1−x Ge x )2—a high pressure study. J. Phys., Condens. Matter 14, 10731–10736 (2002)

    Article  ADS  Google Scholar 

  29. A.V. Goltsev, M.M. Abd-Elmeguid, Origin of the pressure dependence of the Kondo temperature in Ce- and Yb-based heavy-fermion compounds. J. Phys., Condens. Matter 17, S813–S821 (2005)

    Article  ADS  Google Scholar 

  30. M.E. Macovei, M. Nicklas, C. Krellner, C. Geibel, F. Steglich, Effect of pressure and Ir substitution in YbRh2Si2. J. Phys., Condens. Matter 20, 505205 (2008)

    Article  Google Scholar 

  31. P. Coleman, Quantum criticality and novel phases: a panel discussion. Phys. Status Solidi B 247, 506–512 (2010)

    Article  Google Scholar 

  32. Y. Tokiwa, P. Gegenwart, C. Geibel, F. Steglich, Separation of energy scales in undoped YbRh2Si2 under hydrostatic pressure. J. Phys. Soc. Jpn. 78, 123708 (2009)

    Article  ADS  Google Scholar 

  33. Q. Si, Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Physica B 378, 23–27 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  34. Q. Si, Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi B 247, 457–764 (2010)

    Article  Google Scholar 

  35. G. Knebel, R. Boursier, E. Hassinger, G. Lapertot, P.G. Niklowitz, A. Pourret, B. Salce, J.P. Sanchez, I. Sheikin, P. Bonville, H. Harima, J. Flouquet, Localization of 4f state in YbRh2Si2 under magnetic field and high pressure: Comparison with CeRh2Si2. J. Phys. Soc. Jpn. 75, 114709 (2006)

    Article  ADS  Google Scholar 

  36. S. Watanabe, A. Tsuruta, K. Miyake, J. Flouquet, Magnetic-field control of quantum critical points of valence transition. Phys. Rev. Lett. 100, 236401 (2008)

    Article  ADS  Google Scholar 

  37. T. Misawa, Y. Yamaji, M. Imada, YbRh2Si2: Quantum tricritical behavior in itinerant electron systems. J. Phys. Soc. Jpn. 77, 093712 (2008)

    Article  ADS  Google Scholar 

  38. S.L. Bud’ko, E. Morosan, P.C. Canfield, Magnetic field induced non-Fermi-liquid behavior in YbAgGe single crystals. Phys. Rev. B 69, 014415 (2004)

    Article  ADS  Google Scholar 

  39. J. Custers, P. Gegenwart, C. Geibel, F. Steglich, P. Coleman, S. Paschen, Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2. Phys. Rev. Lett. 104, 186402 (2010)

    Article  ADS  Google Scholar 

  40. S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, Z. Fisk, Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4. Nat. Phys. 4, 603–607 (2008)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Wirth.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Friedemann, S., Westerkamp, T., Brando, M. et al. Magnetic and Electronic Quantum Criticality in YbRh2Si2 . J Low Temp Phys 161, 67–82 (2010). https://doi.org/10.1007/s10909-010-0201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-010-0201-8

Keywords

  • Heavy fermion metals
  • Quantum criticality
  • Kondo breakdown
  • Chemical pressure