Skip to main content
Log in

Effect of Nd-Substitution on Thermally Activated Flux Creep in the Bi1.7Pb0.3−x Nd x Sr2Ca3Cu4O12+y Superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The magnetoresistance of Bi1.7Pb0.3−x Nd x Sr2Ca3Cu4O12+y superconductors with x=0.025, 0.050, 0.075 and 0.10 have been measured for different values of the applied magnetic field. Thermally activated flux creep model has been studied in order to calculate the flux pinning energies. The calculated flux pinning energies decrease with the increasing Nd-content and applied magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Özkurt, A. Ekicibil, M.A. Aksan, B. Özçelik, M.E. Yakıncı, K. Kıymaç, J. Low. Temp. Phys. 149, 105 (2007)

    Article  ADS  Google Scholar 

  2. B. Özkurt, B. Özçelik, K. Kıymaç, M.A. Aksan, M.E. Yakıncı, Physica C 467, 112 (2007)

    ADS  Google Scholar 

  3. P. Kameli, H. Salamati, M. Eslami, Solid State Commun. 137, 30 (2006)

    Article  ADS  Google Scholar 

  4. P. Kameli, H. Salamati, I. Abdolhosseini, D. Sohrabi, Physica C 468, 137 (2008)

    Article  ADS  Google Scholar 

  5. A.R. Jurelo, I.A. Castiro, J. Roa-Rojas, L.M. Ferreira, L. Ghivelder, P. Pureur, P. Radrigues Jr., Physica C 311, 133 (1999)

    Article  ADS  Google Scholar 

  6. S.A. Saleh, Physica C 444, 40 (2006)

    Article  ADS  Google Scholar 

  7. A. Jukna, I. Barboy, G. Jung, A. Abrutis, X. Li, D. Wang, R. Sobolewski, J. Appl. Phys. 99, 113902 (2006)

    Article  ADS  Google Scholar 

  8. M.R. Mohammadizadeh, M. Akhavan, Supercond. Sci. Technol. 16, 538 (2003)

    Article  ADS  Google Scholar 

  9. M.H. Pu, Z.S. Cao, Q.Y. Wang, Y. Zhao, Supercond. Sci. Technol. 19, 462 (2006)

    Article  ADS  Google Scholar 

  10. M.H. Pu, Y. Feng, P.X. Zhang, J.X. Wang, J.J. Du, L. Zhou, Physica C 412, 467 (2004)

    Article  ADS  Google Scholar 

  11. A. Pandey, D. Bhattacharya, R.G. Sharma, Physica C 340, 211 (2000)

    Article  ADS  Google Scholar 

  12. T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 662 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, in Strong Correlation and Superconductivity, ed. by H. Fukuyama, S. Maekawa, A.P. Malozemoff. Springer Series in Sol. State Sci., vol. 89 (Springer, Berlin, 1989)

    Google Scholar 

  14. R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)

    Article  ADS  Google Scholar 

  15. R.C. Ma, et al., Physica C 405, 34 (2004)

    Article  ADS  Google Scholar 

  16. T. Kanai, T. Kamo, S. Matsuda, Jpn. J. Appl. Phys. 28, L551 (1989)

    Article  ADS  Google Scholar 

  17. S. Sunshine, et al., Phys. Rev. B 38, 893 (1988)

    Article  ADS  Google Scholar 

  18. M. Takano, et al., Jpn. J. Appl. Phys. 27, L1041 (1988)

    Article  ADS  Google Scholar 

  19. N. Kijima, N. Endo, J. Tsuchiya, A. Sumiyama, M. Mizino, O. Oguri, Jpn. J. Appl. Phys. 27, L821 (1989)

    Article  Google Scholar 

  20. Y.T. Huang, R.G. Liu, S.W. Lu, P.T. Wu, W.N. Wang, Appl. Phys. Lett. 56, 779 (1990)

    Article  ADS  Google Scholar 

  21. Y. Li, B. Yang, J. Mater. Sci. Lett. 13, 594 (1993)

    Article  ADS  Google Scholar 

  22. B. Jayaram, P.C. Lanchester, M.T. Weller, Physica C 160, 17 (1989)

    Article  ADS  Google Scholar 

  23. M.M.A. Sekkina, H.A. El-Daly, K.M. Elsabawy, Supercond. Sci. Tech. 17, 93 (2004)

    Article  ADS  Google Scholar 

  24. A. Coşkun, A. Ekicibil, B. Özçelik, Chin. Phys. Lett. 19(12), 1863 (2002)

    Article  Google Scholar 

  25. C. Quitmann, D. Andrich, C. Jarchow, M. Fleuster, B. Beschoten, G. Guntherodt, Phys. Rev. B 46, 11813 (1992)

    Article  ADS  Google Scholar 

  26. P.N. Peters, R.C. Sisk, E.W. Urban, Appl. Phys. Lett. 52, 2066 (1998)

    Article  ADS  Google Scholar 

  27. M. Tinkham, Introduction to Superconductivity, 2nd edn. (McGraw-Hill, New York, 1996)

    Google Scholar 

  28. A. Jukna, I. Barboy, G. Jung, S.S. Banerjee, Y. Myasoedov, V. Plausinaitiene, A. Abrutis, X. Li, D. Wang, R. Sobolewski, Appl. Phys. Lett. 87, 192504 (2005)

    Article  ADS  Google Scholar 

  29. T.P. Sheahen (ed.), Introduction to High-Temperature Superconductivity (Kluwer Academic, Amsterdam, 2002)

    Google Scholar 

  30. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)

    Article  ADS  Google Scholar 

  31. P.W. Anderson, Y.B. Kim, Rev. Mod. Phys. 36, 39 (1964)

    Article  ADS  Google Scholar 

  32. T.T. Palstra, B. Batlogg, R.B. van Dover, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 6621 (1990)

    Article  ADS  Google Scholar 

  33. J.J. Kim, H. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Özçelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özkurt, B., Özçelik, B. Effect of Nd-Substitution on Thermally Activated Flux Creep in the Bi1.7Pb0.3−x Nd x Sr2Ca3Cu4O12+y Superconductors. J Low Temp Phys 156, 22–29 (2009). https://doi.org/10.1007/s10909-009-9899-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9899-6

Keywords

PACS

Navigation