Skip to main content
Log in

Improvement of the intergranular pinning energy in the Na-doped Bi-2212 superconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, magnetoresistivity performance of polycrystalline Bi2Sr2Ca1−x Na x Cu2O8+y superconductor with x = 0.0, 0.05, 0.075, 0.10, 0.15, and 0.20 has been studied by change of flux pinning mechanism. Samples have been prepared using a polymer solution technique with polyethyleneimine. The effects of Na substitution for Ca on the activation energies, irreversibility field, upper critical magnetic field and coherence length have been studied. The magnetoresistance of samples has been measured at applied magnetic fields between 0 and 9 T. Broadening of superconducting transition has been observed under magnetic field, explained on the basis of Thermally Activated Flux Flow (TAFF) model. The upper critical magnetic field H C2 (0) and the coherence length (ζ(0)) at T = 0 K were calculated using the resistivity data and H C2(0), respectively. H C2 (0) and ξ(0) values have been calculated as 186.4, 195.5, 321.0, 296.0, 292.5, 280.9 T, and 13.29, 12.98, 10.13, 10.55, 10.61, 10.69 Å for the 0.0, 0.05, 0.075, 0.10, 0.15, and 0.20 Na-doped samples, respectively. TAFF model has been studied in order to calculate the flux pinning energies. In particular, the flux pinning energies of Bi2Sr2Ca1−xNaxCu2O8+y where x = 0.075 determined to be 0.019 eV for 9 T and 0.239 eV for 0 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.M. Huijbregtse, B. Dam, R.C.F. van der Geest, F.C. Klaassen, R. Elberse, J.H. Rector, R. Griessen, Phys. Rev. B 62, 1338 (2000)

    Article  Google Scholar 

  2. J. Albrecht, Phys. Rev. B 68, 054508 (2003)

    Article  Google Scholar 

  3. M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton, Science 251, 1587 (1991)

    Article  Google Scholar 

  4. C. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart, D.G. Schlom, Nature (London) 350, 279 (1991)

    Article  Google Scholar 

  5. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L 209 (1988)

  6. B. Chattopadhyay, B. Bandyopadhyay, A. Poddar, P. Mandal, A.N. Das, B. Ghosh, Physica C 331, 38 (2000)

    Article  Google Scholar 

  7. G. Ilonca, V. Toma, T.R. Yang, A.V. Pop, P. Balint, M. Bodea, E. Macocian, Physica C 369, 460 (2007)

    Google Scholar 

  8. X.L. Wang, J. Horvat, G.D. Gu, K.K. Uprety, H.K. Liu, S.X. Dou, Physica C 337, 221 (2000)

    Article  Google Scholar 

  9. T. Yamamoto, I. Kakeya, K. Kadowaki, Physica C 460–462, 799 (2007)

    Article  Google Scholar 

  10. M. Cyrot, D. Pavuna, Introduction to Superconductivity and High-Tc Materials (World Scientific, Singapore, 1995), p. 249

    Google Scholar 

  11. G. Blatter, M.V. Feigelman, V.B. Ceshkenbein, A.I. Larkin, V.M. Vinokur, Rev. Mod. Phys. 6, 1125 (1994)

    Article  Google Scholar 

  12. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)

    Article  Google Scholar 

  13. M. Erdem, O. Ozturk, E. Yucel, S.P. Altintas, A. Varilci, C. Terzioğlu, I. Belenli, Phys. B 406, 705 (2011)

    Article  Google Scholar 

  14. M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)

    Article  Google Scholar 

  15. T.T. Palstra, B. Batlogg, R.B. Van Dover, L.F. Scheemeyer, J.V. Waszczak, Appl. Phys. Lett. 54, 763 (1989)

    Article  Google Scholar 

  16. D.H. Kim, K.F. Gray, R.T. Kampwirth, D.M. Mckay, Phys. Rev. B 42, 6249 (1990)

    Article  Google Scholar 

  17. B. Özkurt, B. Özçelik, J. Low Temp. Phys. 156, 22 (2009)

    Article  Google Scholar 

  18. D. Yazici, M. Erdem, B. Özçelik, J. Supercond. Nov. Magn. 25, 1811 (2012)

    Article  Google Scholar 

  19. D. Sharma, R. Kumar, V.P.S. Awana, Solid State Commun. 152, 941 (2012)

    Article  Google Scholar 

  20. M.R. Mohammadizadeh, M. Akvahan, Physica C 390, 134 (2003)

    Article  Google Scholar 

  21. T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)

    Article  Google Scholar 

  22. A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, in Strong Correlation and Superconductivity, ed. by H. Fukuyama, S. Maekawa, A.P. Malozemoff. Springer Series in Sol. State Sci., vol. 89 (Springer, Berlin, 1989)

  23. R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)

    Article  Google Scholar 

  24. R.C. Ma, W.H. Song, X.B. Zhu, L. Zhang, S.M. Liu, J. Fang, J.J. Du, Y.P. Sun, C.S. Li, Z.M. Yu, Y. Feng, P.X. Zhang, Physica C 405, 34 (2004)

    Article  Google Scholar 

  25. G.F. de la Fuente, A. Sotelo, Y. Huang, M.T. Ruiz, A. Badia, L.A. Angurel, F. Lera, R. Navarro, C. Rillo, R. Ibañez, D. Beltran, F. Sapiña, A. Beltran, Physica C 185, 509 (1991)

    Article  Google Scholar 

  26. B. Özçelik, B. Özkurt, M.E. Yakıncı, A. Sotelo, M.A. Madre, J. Supercond. Nov. Magn. 26, 873 (2013)

    Article  Google Scholar 

  27. A. Sotelo, H. Szillat, P. Majewski, F. Aldinger, Supercond. Sci. Technol. 10, 717–720 (1997)

    Article  Google Scholar 

  28. H. Gündogmus, B. Özçelik, B. Özkurt, A. Sotelo, M.A. Madre, J. Supercond. Nov. Magn 26, 111 (2013)

    Article  Google Scholar 

  29. A. Ozaslan, B. Özçelik, B. Özkurt, A. Sotelo, M.A. Madre, J. Supercond. Nov. Magn 27, 53 (2014)

    Article  Google Scholar 

  30. C. Kaya, B. Özçelik, B. Özkurt, A. Sotelo, M.A. Madre, J. Mater. Sci.: Mater. Electron. 24, 1580 (2013)

    Google Scholar 

  31. B. Ozcelik, M. Gursul, A. Sotelo, M. A. Madre, J. Mater. Sci. Mater. Electron. doi:10.1007/s10854-014-2190-x

  32. A. Sotelo, Sh Rasekh, M.A. Madre, J.C. Diez, J. Supercond. Nov. Magn. 24, 19 (2011)

    Article  Google Scholar 

  33. D.R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2010)

    Google Scholar 

  34. S. Satyavathi, K. Nanda Kishore, V. Hari Babu, O. Pena, Supercond. Sci. Technol. 9, 93 (1996)

    Article  Google Scholar 

  35. B.D. Cullity, Element of X-ray Diffraction (Addition-Wesley, Reading, MA, 1978)

    Google Scholar 

  36. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liv, N.E. Floer, Physica C 176, 95 (1991)

    Article  Google Scholar 

  37. J.B. Torrance, A. Bezinge, A.I. Nazzal, Phys. Rev. B 40, 8872 (1989)

    Article  Google Scholar 

  38. M.C. Sekhar, S.V. Suryanarayana, Physica C 415, 209 (2004)

    Article  Google Scholar 

  39. G. Beni, Phys. Rev. B 10, 2187 (1974)

    Article  Google Scholar 

  40. P.M. Chaikin, G. Beni, Phys. Rev. B 46, 647 (1976)

    Article  Google Scholar 

  41. J.R. Cooper, B. Alavi, L.W. Zhow, W.P. Boyermann, G. Gruner, Phys. Rev. B 35, 8794 (1987)

    Article  Google Scholar 

  42. N.G. Gomaa, Egypt. J. Solid 22, 256 (1999)

    Google Scholar 

  43. J.J. Kim, H. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)

    Article  Google Scholar 

  44. E. Govea-Alcaide, I. Garcia-Fornaris, P. Mune, R.F. Jardim, Eur. Phys. J. B 58, 373 (2007)

    Article  Google Scholar 

  45. P. Kameli, H. Salamati, I. Abdolhosseini, D. Sohrabi, Physica C 468, 137 (2008)

    Article  Google Scholar 

  46. D. Yazıcı, B. Özçelik, M.E. Yakıncı, J. Low Temp. Phys. 163, 370 (2011)

    Article  Google Scholar 

  47. H. Gündogmus, B. Özçelik, A. Sotelo, M.A. Madre, J. Mater. Sci.: Mater. Electron. 24, 2568 (2013)

    Google Scholar 

  48. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Research Fund of Cukurova University, Adana, Turkey, under grant contracts no: FEF 2013YL18 and FEF2013BAP22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Özçelik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özçelik, B., Gürsul, M., Sotelo, A. et al. Improvement of the intergranular pinning energy in the Na-doped Bi-2212 superconductors. J Mater Sci: Mater Electron 26, 2830–2837 (2015). https://doi.org/10.1007/s10854-015-2765-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2765-1

Keywords

Navigation