Skip to main content
Log in

Convective Turbulence in Superfluid Solutions 3He–4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In present work, we continue our experimental investigations of heat instability in superfluid 3He–4He solutions heated from below. We research two solutions with 3He concentrations 5.0% and 9.5% for temperature of 270 mK. It is found that for 5% solution the dependence \(\nabla T(\dot{Q})\) is linear in temperature range studied whereas for the solution of 9.5% we observed the deviation from linear dependence above some critical value  \(\dot{Q}_{c}\) . This effect manifests the thermal instability which appears under start of phase separation in 9.5% solution if heat flow is switched on. For 5.0% solution where one does not observe the phase separation at the values of  \(\dot{Q}\)  applied, the instability was not observed. To identify the possible mechanism of a thermal instability in stratified solution, we estimated the dependence of the Nusselt number on relative Raileigh number Ra/Ra c . One observes that the dependence can be fitted as Nu=(Ra/Ra c )b where b=0.31±0.04. Note that the dependence obtained agrees rather good with the empiric expression of (Busse in Rep. Prog. Phys. 41:1929, 1978) and connecting the numbers Nu and Ra for turbulent convection. This gives grounds to conclude the heat transfer in a stratified solution is realized by transition to the regime of turbulent convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978)

    Article  ADS  Google Scholar 

  2. W.F. Vinen, Proc. R. Soc. Lond. Ser. A 240, 114 (1957)

    Article  ADS  Google Scholar 

  3. W.F. Vinen, Proc. R. Soc. Lond. Ser. A 240, 128 (1957)

    ADS  Google Scholar 

  4. W.F. Vinen, Proc. R. Soc. Lond. Ser. A 242, 493 (1957)

    ADS  Google Scholar 

  5. Y. Maeno, H. Haucke, R.E. Ecke, J.C. Wheatley, J. Low Temp. Phys. 59, 305 (1985)

    Article  ADS  Google Scholar 

  6. T.S. Sullivan, V. Steinberg, R.E. Ecke, J. Low Temp. Phys. 90, 343 (1993)

    Article  ADS  Google Scholar 

  7. R.F. Mudde, H. van Beelen, Physica B 162, 197 (1990)

    Article  ADS  Google Scholar 

  8. R.F. Mudde, H. van Beelen, Physica B 176, 17 (1992)

    Article  ADS  Google Scholar 

  9. R.F. Mudde, H. van Beelen, Physica B 176, 69 (1992)

    Article  ADS  Google Scholar 

  10. G. Sheshin, V. Chagovets, T. Kalko, E. Rudavskii, A. Zadorozhko, J. Low Temp. Phys. 138, 301 (2005)

    Article  ADS  Google Scholar 

  11. W.R. Abel, R.T. Johnson, J.C. Wheatly, W. Zimmermann, Phys. Rev. Lett. 18, 737 (1967)

    Article  ADS  Google Scholar 

  12. W.R. Abel, J.C. Wheatly, Phys. Rev. Lett. 21, 1231 (1968)

    Article  ADS  Google Scholar 

  13. G. Sheshin, V. Chagovets, T. Kalko, E. Rudavskii, A. Zadorozhko, J. Low Temp. Phys. 146, 403 (2007)

    Article  ADS  Google Scholar 

  14. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1978)

    Google Scholar 

  15. S. Burmistrov, T. Satoh, J. Low Temp. Phys. 138, 513 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sheshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheshin, G., Chagovets, V., Kalko, T. et al. Convective Turbulence in Superfluid Solutions 3He–4He. J Low Temp Phys 150, 420–425 (2008). https://doi.org/10.1007/s10909-007-9569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9569-5

Keywords

PACS

Navigation