Skip to main content
Log in

One- and Two-Electron Bubbles in Superfluid 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Properties of one- and two-electron bubbles in superfluid 4He at 0 K were studied by density functional theory. The model allows for accurate treatment of both the electronic and liquid degrees of freedom and as such, enables accurate calculation of bubble energetics for the ground and excited electronic states. The obtained results were compared against the earlier “bubble model” calculations and the limits and accuracy of the bubble model were established. The calculations were carried out in 3-D space and the non-spherical solvation structures for the 1P and 1D excited states were calculated. The 1P state was found to be stable within the radiative lifetime and no plausible non-radiative relaxation channels were found. Finally, a coupled boson and fermion density functional theory was used to show that two-electron bubbles are unstable in both the singlet and triplet electronic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Northby, T.M. Sanders Jr., Phys. Rev. Lett. 18, 1184 (1967)

    Article  ADS  Google Scholar 

  2. C.C. Grimes, G. Adams, Phys. Rev. B 41, 6366 (1990)

    Article  ADS  Google Scholar 

  3. C.C. Grimes, G. Adams, Phys. Rev. B 45, 2305 (1992)

    Article  ADS  Google Scholar 

  4. A.Y. Parshin, S.V. Pereverzev, JETP Lett. 52, 282 (1990)

    ADS  Google Scholar 

  5. A.Y. Parshin, S.V. Pereverzev, JETP 74, 68 (1992)

    Google Scholar 

  6. A. Ghosh, H.J. Maris, Phys. Rev. B 72, 054512 (2005)

    Article  ADS  Google Scholar 

  7. J. Jortner, N.R. Kestner, S.A. Rice, M.H. Cohen, J. Chem. Phys. 43, 2614 (1965)

    Article  ADS  Google Scholar 

  8. W.B. Fowler, D.L. Dexter, Phys. Rev. 176, 176 (1968)

    Article  Google Scholar 

  9. F. Ancilotto, F. Toigo, Phys. Rev. B 50, 12820 (1994)

    Article  ADS  Google Scholar 

  10. H.J. Maris, J. Low Temp. Phys. 120, 173 (2000)

    Article  Google Scholar 

  11. J. Eloranta, V.A. Apkarian, J. Chem. Phys. 117, 10139 (2002)

    Article  ADS  Google Scholar 

  12. V. Grau, M. Barranco, R. Mayol, M. Pi, Phys. Rev. B 73, 064502 (2006)

    Article  ADS  Google Scholar 

  13. D.L. Dexter, W.B. Fowler, Phys. Rev. 183, 307 (1969)

    Article  ADS  Google Scholar 

  14. H.J. Maris, J. Low Temp. Phys. 132, 77 (2003)

    Article  Google Scholar 

  15. J. Dupont-Roc, M. Himbert, N. Pavloff, J. Treiner, J. Low Temp. Phys. 81, 31 (1990)

    Article  ADS  Google Scholar 

  16. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, J. Treiner, Phys. Rev. B 52, 1193 (1995)

    Article  ADS  Google Scholar 

  17. N.G. Berloff, J. Low Temp. Phys. 116, 359 (1999)

    Article  Google Scholar 

  18. M. Guilleumas, F. Dalfovo, I. Oberosler, L. Pitaevskii, S. Stringari, J. Low Temp. Phys. 110, 449 (1998)

    Article  Google Scholar 

  19. F. Dalfovo, S. Stringari, J. Chem. Phys. 115, 10078 (2001)

    Article  ADS  Google Scholar 

  20. F. Dalfovo, R. Mayol, M. Pi, Phys. Rev. Lett. 85, 1028 (2000)

    Article  ADS  Google Scholar 

  21. J. Eloranta, N. Schwentner, V.A. Apkarian, J. Chem. Phys. 116, 4039 (2002)

    Article  ADS  Google Scholar 

  22. M. Barranco, R. Guardiola, S. Hernández, R. Mayol, J. Navarro, M. Pi, J. Low Temp. Phys. 142, 1 (2006)

    Article  ADS  Google Scholar 

  23. T. Isojärvi, L. Lehtovaara, J. Eloranta, AIP Conf. Proc. Low Temp. Phys. A, 386 (2006)

  24. L. Lehtovaara, T. Kiljunen, J. Eloranta, J. Comput. Phys. 194, 78 (2004)

    Article  MATH  ADS  Google Scholar 

  25. L. Lehtovaara, J. Eloranta, J. Low Temp. Phys. 138, 91 (2005)

    Article  ADS  Google Scholar 

  26. L. Lehtovaara, J. Eloranta, J. Comput. Phys. 221, 148 (2007)

    Article  MATH  ADS  Google Scholar 

  27. J. Wilks, The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967)

    Google Scholar 

  28. OpenDX version 4.3.2, http://www.opendx.org

  29. H.M. Guo, D.O. Edwards, R.E. Sarwinski, J.T. Tough, Phys. Rev. Lett. 27, 1259 (1971)

    Article  ADS  Google Scholar 

  30. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  31. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1955)

    MathSciNet  Google Scholar 

  32. A.K. Rajagopal, J. Callaway, Phys. Rev. B 7, 1912 (1973)

    Article  ADS  Google Scholar 

  33. S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)

    Article  ADS  Google Scholar 

  34. J.P. Perdew, A. Savin, K. Burke, Phys. Rev. A 51, 4531 (1995)

    Article  ADS  Google Scholar 

  35. S.L. Fiedler, J. Eloranta, Unpublished manuscript (2007)

  36. H.J. Maris, A. Ghosh, D. Konstantinov, M. Hirsch, J. Low Temp. Phys. 134, 227 (2004)

    Article  ADS  Google Scholar 

  37. L. Lehtovaara, J. Eloranta, AIP Conf. Proc. Low Temp. Phys. A, 167 (2006)

  38. J. Tempere, I.F. Silvera, J.T. Devreese, Phys. Rev. B 67, 035402 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eloranta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehtovaara, L., Eloranta, J. One- and Two-Electron Bubbles in Superfluid 4He. J Low Temp Phys 148, 43–52 (2007). https://doi.org/10.1007/s10909-007-9348-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9348-3

Keywords

PACS

Navigation