Skip to main content
Log in

The Electron Bubble and the \(He_{60}\) Fullerene: A First-Principles Approach

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Helium has a light atomic mass and, as a closed shell element, shows minimal interaction with other particles of the environment. Such properties favor the capture of an electron by liquid helium, leading to the formation of an electron bubble. The helium bubbles are of theoretical importance since different levels of quantum mechanical models can be tested for the correct prediction of a single quantum particle trapped in a cage. In this work, we propose a first-principles model of the electron bubble that takes, for the first time, the electronic structure of the cage into consideration. The model consists of a fullerene-type cage made of He atoms with an additional electron. The solution of the many-body Schroedinger equation is then performed using density functional theory, with a small and an extra-large atomic basis set. Several major improvements over the model of a particle in a rigid or soft spherical potential are assessed in this way, such as the localization and delocalization of the electron in the helium bubble, the transition of the electron to the continuum, the polarization of the He atoms building the wall, the ionic state of the electron bubble, besides the determination of relations of the volume-pressure type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Poitrenaud, F.I.B. Williams, Precise measurement of effective mass of positive and negative charge carriers in liquid helium II. Phys. Rev. Lett. 29, 1230–1232 (1972). Erratum Phys. Rev. Lett. 32, 1213 (1974)

    Article  ADS  Google Scholar 

  2. T. Ellis, P.V.E. McClintock, Effective mass of the normal negative-charge carrier in bulk \(He\) II. Phys. Rev. Lett. 48, 1834–1837 (1982)

    Article  ADS  Google Scholar 

  3. T. Ellis, P.V.E. McClintock, R.M. Bowley, Pressure dependence of the negative ion effective mass in \(He\) II. J. Phys. C Solid State Phys. 16, L485–L489 (1983)

    Article  ADS  Google Scholar 

  4. Y. Huang, H.J. Maris, Effective mass of an electron bubble in superfluid helium-4. J. Low. Temp. Phys. 186, 208–216 (2017)

    Article  ADS  Google Scholar 

  5. W.T. Sommer, Liquid helium as a barrier to electrons. Phys. Rev. Lett. 12, 271–273 (1964)

    Article  ADS  Google Scholar 

  6. L. Meyer, F. Reif, Mobilities of \(He\) ions in liquid helium. Phys. Rev. 110, 279–280 (1958)

    Article  ADS  Google Scholar 

  7. L. Meyer, F. Reif, Scattering of thermal energy ions in superfluid liquid \(He\) by phonons and \(He^3\) atoms. Phys. Rev. Lett. 5, 1–3 (1960)

    Article  ADS  Google Scholar 

  8. F. Reif, L. Meyer, Study of superfluidity in liquid \(He\) by ion motion. Phys. Rev. 119, 1164–1173 (1960)

    Article  ADS  Google Scholar 

  9. G. Baym, R.G. Barrera, C.J. Pethick, Mobility of the electron bubble in superfluid helium. Phys. Rev. Lett. 22, 20–23 (1969)

    Article  ADS  Google Scholar 

  10. R. Barrera, G. Baym, Roton-limited mobility of ions is superfluid \(He^4\). Phys. Rev. A6, 1558–1566 (1972)

    Article  ADS  Google Scholar 

  11. K.W. Schwarz, Charge-carrier mobilities in liquid helium at the vapor pressure. Phys. Rev. A 6, 837–843 (1972)

    Article  ADS  Google Scholar 

  12. V. Grau, M. Barranco, R. Mayol, M. Pi, Electron bubbles in liquid helium: density functional calculations of infrared absorption spectra. Phys. Rev. B 73, 064502 (2006)

    Article  ADS  MATH  Google Scholar 

  13. J. Elorantaa, V.A. Apkarian, A time dependent density functional treatment of superfluid dynamics: equilibration of the electron bubble in superfluid 4 \(He\). J. Phys. Chem. 117, 10139–10150 (2002)

    Article  Google Scholar 

  14. C. Grimes, G. Adams, Infrared spectrum of the electron bubble in liquid helium. C. Phys. Rev. B 41, 6366–6371 (1990)

    Article  ADS  Google Scholar 

  15. C.C. Grimes, G. Adams, Infrared-absorption spectrum of the electron bubble in liquid helium. Phys. Rev. B 45, 2305–2310 (1992)

    Article  ADS  Google Scholar 

  16. A.Y. Parshin, S.V. Pereverzev, Direct observation of optical absorption by excess electrons in liquid helium. JETP Lett. 52, 282–284 (1990)

    ADS  Google Scholar 

  17. A.Y. Parshin, S.V. Pereverzev, Spectroscopic study of excess electrons in liquid helium. Sov. Phys. JETP 74, 68–76 (1992)

    Google Scholar 

  18. S.V. Pereverzev, A.Y. Parshin, Spectroscopic study of excess electrons in liquid helium. Physica B Phys. Condens. Matter. 197, 347–359 (1994)

    Article  ADS  Google Scholar 

  19. G.W. Rayfield, F. Reif, Quantized vortex rings in superliquid helium. Phys. Rev. A 136, 1194–1208 (1964). Erratum Phys. Rev. 137, AB4 (1965)

    Article  ADS  Google Scholar 

  20. H.J. Maris, On the fission of elementary particles and the evidence for fractional electrons in liquid helium. J. Low. Temp. Phys. 120, 173–204 (2000)

    Article  ADS  Google Scholar 

  21. W. Wei, Z. Xie, L.N. Cooper, G.M. Seidel, H.J. Maris, Study of exotic ions in superfluid helium and the possible fission of the electron wave function. J. Low. Temp. Phys. 178, 78–117 (2015)

    Article  ADS  Google Scholar 

  22. Y.H. Huang, R.E. Lanou, H.J. Maris, G.M. Seidel, B. Sethumadhavan, W. Yao, Potential for precision measurement of solar neutrino luminosity by HERON. Astropart. Phys. 30, 1–11 (2008)

    Article  ADS  Google Scholar 

  23. F. Ancilotto, F. Toigo, Properties of an electron bubble approaching the surface of liquid helium. Phys. Rev. B 50, 12820–12830 (1994)

    Article  ADS  Google Scholar 

  24. D. Elwell, H. Meyer, Molar volume, coefficient of thermal expansion, and related properties of liquid \(He^4\) under pressure. Phys. Rev. 164, 245–255 (1967)

    Article  ADS  Google Scholar 

  25. D.G. Hurst, D.G. Henshaw, Atomic distribution in liquid helium by neutron diffraction. Phys. Rev. 100, 994–1001 (1955)

    Article  ADS  Google Scholar 

  26. R.G. Parr, Y. Weitao, Density-Functional theory of atoms and molecules, Chapter 7 & 8 (Clarendon Press, Oxford, 1989). ISBN-13: 978-0195092769

  27. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  ADS  Google Scholar 

  28. Chengteh Lee, Weitao Yang, Robert G. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  ADS  Google Scholar 

  29. J. Soullard, R. Santamaria, S.A. Cruz, Endohedral confinement of molecular hydrogen. Chem. Phys. Lett. 391, 187–190 (2004)

    Article  ADS  Google Scholar 

  30. J. Soullard, R. Santamaria, J. Jellinek, Pressure and size effects in endohedrally confined hydrogen clusters. J. Chem. Phys. 128, 064316 (2008)

    Article  ADS  Google Scholar 

  31. R. Santamaria, A. Alvarez de la Paz, L. Roskop, L. Adamowicz, Statistical contact model for the confinement of atoms. J. Stat. Phys. 164, 1000–1025 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M.G. Medvedev, I.S. Bushmarinov, Ji Sun, J.P. Perdew, K.A. Lyssenko, Density functional theory is straying from the path toward the exact functional. Science 355, 49–52 (2017)

    Article  ADS  Google Scholar 

  33. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010)

    Article  ADS  MATH  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford (2013)

  35. T. Kinoshita, Ground state of the helium atom. Phys. Rev. II 115, 366–374 (1959)

    Article  ADS  MATH  Google Scholar 

  36. T. Koga, S. Morishita, Optimal Kinoshita wave functions for helium-like atoms. Z. Phys. D Atoms Mol. Clust. 34, 71–74 (1995)

    Article  Google Scholar 

  37. R. Santamaria, J. Soullard, The atomization process of endohedrally confined hydrogen molecules. Chem. Phys. Lett. 414, 483–488 (2005)

    Article  ADS  Google Scholar 

  38. A. Austin, G. Petersson, M.J. Frisch, F.J. Dobek, G. Scalmani, K. Throssell, A density functional with spherical atom dispersion terms. J. Chem. Theory Comput. 8, 4989–5007 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to DGTIC-UNAM for the supercomputing facilities, and the computing staff of the Institute of Physics, UNAM, for their valuable support. RS acknowledges financial support from IF-UNAM, under project PIIF-03, and project IN-111-918 from PAPIIT-DGAPA to perform this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Santamaria.

Appendix

Appendix

The purpose of this section is to evaluate the dispersion effects on the He bubble energy, and also estimate the accuracy of energy differences by using different DFT energy functionals. To do this, we depart from the fact that an energy functional of DFT is an approximation, whose energies are usually adapted to reproduce the exchange-correlation and dispersion energies measured in the experiments. There is not an exchange-correlation energy functional or dispersion energy functional exclusively designed for helium. In spite of that, there are functionals specially designed to provide the correct long-range attractive and repulsive interactions. One of these is the \(APF-D\) functional, which includes dispersion effects as an empirical correction to the APF functional [38]. The dispersion expression contained in the \(APF-D\) functional is shown below.

$$\begin{aligned} E_\mathrm{disp}= \sum _{A>B} V (R_{AB}); \quad V (R_{AB})= \left\{ \begin{array} {l} 0; \quad R_{AB} \le R_{d,AB}\\ \\ \frac{C_{6,AB}}{[R_{AB}^2 -R_{s,AB}^2]^3}\, f(R_{AB})\, g(R_{AB}); \quad R_{AB} > R_{d,AB} \end{array}\right. \nonumber \\ \end{aligned}$$
(9)

The dispersion term contains the damping function f and switching function g for the attenuation of the Coulomb interactions, and with the purpose of producing continuous derivatives. There are nine parameters \(P_i\) adjusted to reproduce the ionization potentials (\(\varepsilon _i\)), and effective atomic polarizabilities (\(\alpha _i\)) of 15 noble gas dimers (several of them containing He), plus some hydrocarbon dimers.

$$\begin{aligned} C_{6,AB}= & {} \frac{3}{2}\, P_1 \left( \frac{\varepsilon _{H,A}\, \varepsilon _{H,B}}{\varepsilon _{H,A} + \varepsilon _{H,B}} \right) \alpha _A\, \alpha _B\nonumber \\ R_{s,AB}= & {} \frac{P_i}{\sqrt{-(\varepsilon _{H,A} + \varepsilon _{H,B})/2}} \quad ; \quad R_{d,AB}= \frac{P_j}{\sqrt{-(\varepsilon _{H,A} + \varepsilon _{H,B})/2}}- P_6\nonumber \\ P_1= & {} 1.18604 \quad ; \quad P_6= 0.234859 \end{aligned}$$
(10)

The \(P_i\) factor is one of the \(P_2\), \(P_3\), \(P_4\), \(P_5\) parameters, and the \(P_j\) factor is one of the \(P_7\), \(P_8\), \(P_9\) parameters (presented in Table 3 of Ref. [38]), decided according to the dimer type AB. The accuracy of the APF-family of functionals is comparable to that of more refined levels of theory, such as CCSD(T)/aug-cc-pVTZ, and the energy values are found in excellent agreement with experimental measurements.

In the present work, we have been mainly concerned with energy differences (such as the ionization potential, energy gap, pressure, and more). Therefore, we consider the difference between the electron bubble, \(E (He_{60}^-)\), and the energy of the empty cage, \(E (He_{60})\), for the evaluation of the dispersion effects. In Table 4, we present a list of energies using the energy functional \(APF-D\), it includes dispersion effects in the energy, and the energy functional APF, which is the counterpart functional that includes no dispersion effects in the energy [38]. The basis set is \(aug-cc-pV5Z\), it was used in the main text. Table 4 also includes the level of theory used in the main text (\(DFT-KS/B88LYP/aug-cc-pV5Z\)) with the purpose of comparing energies. The computations are performed for a helium bubble with radius 8.227 Å.

Table 4 Energies of the He cage with and without electron

The results of Table 4 indicate that the energy difference \(E(He_{60}^-) -E(He_{60})\) using the functional \(APF-D\), which includes dispersion effects, is 0.0159 Hartree. It is essentially identical to the energy obtained from the functional APF, which includes no dispersion effects. Thereby, there are no noticeable energy changes (by the inclusion of the dispersion effects) up to the fourth significant figure on the bubble energy.

On the other side, we find a value of 0.0191 Hartree of the energy difference \(E(He_{60}^-) -E(He_{60})\) using the level of theory reported in the body text. There is an absolute difference of 0.0031 Hartree between the energies given by the functionals APF and B88LYP, both without including dispersion effects. In principle, the value 0.0031 Hartree may be considered an upper limit in the error when one uses different energy functionals. Such a number is an order of magnitude smaller than the energy differences presented in the main text. The reason to use the B88LYP functional, instead of the APF functional, in the main text is the relatively rapidity of the energy convergence in the self-consistent process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santamaria, R., Soullard, J. & Barrera, R.G. The Electron Bubble and the \(He_{60}\) Fullerene: A First-Principles Approach. J Low Temp Phys 195, 96–115 (2019). https://doi.org/10.1007/s10909-018-02134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-02134-x

Keywords

Navigation