Skip to main content
Log in

The Heat Capacity of 4He Monolayers Adsorbed on Evaporated Gold

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The specific heat of 4He condensed on an evaporated gold surface has been measured for coverages between 0.007 and 0.096 Å−2 and temperatures between 0.4 and 3.0 K. There are at least two types of physisorption site on the gold surface with binding energies −83 ± 7 and −94 ± 7 K. For coverages below 0.06 Å−2 (∼0.5 monolayers), the 4He is a two-dimensional classical gas at sufficiently high temperatures. At lower temperatures and higher coverages, the 4He forms condensed phases, including liquids, solids commensurate with the gold lattice, and incommensurate solids. The phase diagram of 4He/evaporated gold is similar to that for 4He/graphite, but the phase boundaries are shifted and not well defined, nor is the diagram as rich in structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. G. Dash, Films on Solid Surfaces, Academic Press, New York (1975).

    Google Scholar 

  2. D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 67, 3535 (1991).

    Article  PubMed  Google Scholar 

  3. M. Bretz and J. G. Dash, Phys. Rev. Lett. 26, 963 (1971).

    Article  Google Scholar 

  4. R. L. Siddon and M. Schick, Phys. Rev. A 9, 907 (1974).

    Article  Google Scholar 

  5. R. L. Elgin and D. L. Goodstein, Phys. Rev. A 9, 2657 (1974).

    Article  Google Scholar 

  6. M. W. Cole, D. R. Frankl, and D. L. Goodstein, Rev. Mod. Phys. 53, 199 (1981), and references contained therein.

    Article  Google Scholar 

  7. M. Bretz and J. G. Dash, Phys. Rev. Lett. 27, 647 (1971).

    Article  Google Scholar 

  8. D. S. Greywall, Phys. Rev. B. 47, 309 (1993).

    Article  Google Scholar 

  9. M. Bretz, J. G. Dash, D. C. Bickernell, E. O. McLean, and O. E. Vilches, Phys. Rev. A 8, 1589 (1973).

    Article  Google Scholar 

  10. G. Vidali, G. Ihm, H. Kim, and M. W. Cole, Surf. Sc. Rep. 12, 133 (1990).

    Google Scholar 

  11. E. Cheng and M. W. Cole, Phys. Rev. B 42, 3960 (1990).

    Article  Google Scholar 

  12. E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner, Phys. Rev. Lett. 67, 1007 (1991); Phys. Rev. B 46, 13967 (1992); and Erratum, Phys. Rev. B 47, 14661 (1993).

    Article  PubMed  Google Scholar 

  13. P.-J. Nacher and J. Dupont-Roc, Phys. Rev. Lett. 67, 2966 (1991).

    Article  PubMed  Google Scholar 

  14. S. K. Mukherjee, D. P. Druist, and M. H. W. Chan, J. Low Temp. Phys. 87, 113 (1992).

    Article  Google Scholar 

  15. K. S. Ketola, S. Wang, and R. B. Hallock, Phys. Rev. Lett. 68, 201 (1992).

    Article  PubMed  Google Scholar 

  16. P. Taborek and J. E. Rutledge, Phys. Rev. Lett. 68, 2184 (1992); J. E. Rutledge and P. Taborek, Phys. Rev. Lett. 69, 937 (1992).

    Article  PubMed  Google Scholar 

  17. G. Boato, P. Cantini, and R. Tatarek, J. Phys. F 6, L237 (1976).

    Article  Google Scholar 

  18. J. M. Horne and D. R. Miller, Surf. Sci. 66, 365 (1977).

    Article  Google Scholar 

  19. J. Unguris, L. W. Bruch, E. R. Moog, and M. B. Webb, Surf. Sci. 109, 522 (1981).

    Article  Google Scholar 

  20. A. D. Migone, J. Krim, J. G. Dash, and J. Suzanne, Phys. Rev. B 31, 7643 (1985).

    Article  Google Scholar 

  21. T. W. Kenny and P. L. Richards, Phys. Rev. Lett. 64, 2386 (1990).

    Article  PubMed  Google Scholar 

  22. J. P. McKelvey and E. F. Pulver, Am. J. Phys. 32, 749 (1964).

    Google Scholar 

  23. R. M. May, Phys. Rev. 135, A1515 (1964).

    Article  Google Scholar 

  24. J. T. Birmingham, P. L. Richards, and H. Meyer, J. Low Temp. Phys. 103, 183 (1996).

    Article  Google Scholar 

  25. International Crystal Manufacturing Co., Oklahoma City, Oklahoma.

  26. E. B. Graper, J. Vac. Sci. Technol. A 9, 591 (1991).

    Article  Google Scholar 

  27. E. Zaremba and W. Kohn, Phys. Rev. B 15, 1769 (1977).

    Article  Google Scholar 

  28. L. Holland, Vacuum Deposition of Thin Films, John Wiley & Sons Inc., New York (1956), p. 486.

    Google Scholar 

  29. M. Weimer and D. L. Goodstein, Phys. Rev. Lett. 50, 193 (1983).

    Article  Google Scholar 

  30. P. Taborek, Phys. Rev. Lett. 65, 2612 (1990).

    Article  PubMed  Google Scholar 

  31. C. Kittel and H. Kroemer, Thermal Physics, W. H. Freeman and Co., New York (1980), p. 162.

    Google Scholar 

  32. P. Nordlander and J. Harris, J. Phys. C 17, 1141 (1984).

    Google Scholar 

  33. G. Vidali and M. W. Cole, Surf. Sci. 110, 10 (1981).

    Article  Google Scholar 

  34. K. M. Rieder, T. Engel, and N. Garcia, in Proc. ICSS-4 and ECOSS-3, Cannes, 1980, Suppl. II, LeVide, les Couches Minces (1980), p. 861.

  35. N. N. Roy and G. D. Halsey, J. Low Temp. Phys. 4, 231 (1971).

    Article  Google Scholar 

  36. R. H. Tait and J. D. Reppy, Phys. Rev. B. 20, 997 (1979).

    Article  Google Scholar 

  37. D. W. Princehouse, J. Low Temp. Phys. 8, 287 (1972).

    Article  Google Scholar 

  38. J. M. Gottlieb and L. W. Bruch, Phys. Rev. B 41, 7195 (1990).

    Article  Google Scholar 

  39. G. A. Somorjai, Chemistry in Two Dimensions, Cornell University Press, Ithaca (1981), p. 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, J.T., Richards, P.L. The Heat Capacity of 4He Monolayers Adsorbed on Evaporated Gold. J Low Temp Phys 109, 267–286 (1997). https://doi.org/10.1007/s10909-005-0087-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-0087-z

Keywords

Navigation