Skip to main content
Log in

A New Approach to Bose Condensation and Superfluidity in 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

An investigation is made of the implications that the presence of a Bose condensate (BC) has for the form of the many particle Schroedinger wavefunction. It is shown that many particle wavefunctions of states which contribute to the BC, contain long range structure in the position space of each particle. It follows from the requirement that the wavefunction is single valued that, in the presence of a BC, the angular momentum of each particle must be quantised over macroscopic length scales. The paper thus provides a new and simple proof from first principles, that Bose condensation implies macroscopic quantum behaviour. It is shown that this behaviour can be described in terms of the occupation by each particle of the same single particle-like macroscopic wavefunction. The structure in position space of this wavefunction is investigated, using a well known model of the many particle wavefunction for the ground state of 4He. The model predicts that the probability density of each particle is delocalised in the presence of a BC, occupying all spaces in the sample volume, from which the particle is not excluded by the hard core interaction with other particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. London, Nature 141, 643 (1938).

    Google Scholar 

  2. O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).

    Article  Google Scholar 

  3. W. L. Macmillan, Phys. Rev. A 138, 442 (1965). See E. Manoukis, in Momentum Distributions, P. E. Sokol and R. N. Silver (Eds.), Plenum Press, New York (1989), for a recent review of variational calculations in 4He.

    Article  Google Scholar 

  4. D. M. Ceperley and E. L. Pollock, Phys. Rev. Lett. 56, 351 (1986); E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987).

    Article  PubMed  Google Scholar 

  5. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Article  Google Scholar 

  6. V. F. Sears, Phys. Rev. B 28, 5109 (1983).

    Article  Google Scholar 

  7. T. R. Sosnick, W. M. Snow, and P. E. Sokol, Phys. Rev. B 41, 11185 (1990).

    Article  Google Scholar 

  8. P. E. Sokol, Bose Einstein Condensation, A. Griffin and D. W. Snoke (Eds.), Cambridge University Press (1995).

  9. D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, Adam Hilger, New York (1990).

    Google Scholar 

  10. L. D. Landau, J. Phys. Moscow 5, 71 (1941); J. Phys. Moscow 11, 91.

    Google Scholar 

  11. R. P. Feynmann, Phys. Rev. 91, 1291 (1953); 91, 1301 (1953); 94, 262 (1954).

    Article  Google Scholar 

  12. N. N. Bogoliubov, J. Phys. Moscow 11, 23 (1947).

    Google Scholar 

  13. P. C. Hohenberg and P. C. Martin, Ann. Phys. 34, 291 (1965).

    Article  Google Scholar 

  14. S. T. Belaviev, Sov. Phys. JETP 7, 289 (1959).

    Google Scholar 

  15. P. W. Anderson, Rev. Mod. Phys. 38, 298 (1966).

    Article  Google Scholar 

  16. S. K. Ma, H. Gould, and V. K. Wong, Phys. Rev. A 3, 1453 (1971).

    Article  Google Scholar 

  17. V. K. Wong and H. Gould, Ann. Phys. 83, 252 (1974); Phys. Rev. B 14, 3961 (1976).

    Article  Google Scholar 

  18. A. Griffin and T. Cheung, Phys. Rev. A 7, 2086 (1973).

    Article  Google Scholar 

  19. P. Szepfalusy and I. Kondor, Ann. Phys. 82, 1.

  20. A. Griffin, Excitations in a Bose Condensed Liquid, Cambridge University Press (1993), and references therein.

  21. H. R. Glyde, Excitations in Liquid and Solid Helium, Oxford University Press (1994).

  22. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd Edition, Pergamon Press (1978), pp. 192–197.

  23. E. Merzbacher, Quantum Mechanics, John Wiley and Sons, New York (1970), Sec. 8.1.

    Google Scholar 

  24. P. Nozieres and D. Pines, Theory of Quantum Fluids, Vol. II, Addison-Wesley (1990), Chapter 4, p. 50, “the neatest way of characterising superfluidity is in terms of irrotational flow, rather than by the absence of resistance.”

  25. D. C. Champeney, Fourier Transforms and Their Physical Applications, Academic Press (1973), Sec. 7.3 and Appendix L.

  26. W. M. Snow, Y. Yang, and P. E. Sokol, Europhys. Lett. 19, 403 (1992), and references therein.

    Google Scholar 

  27. J. H. Root and E. C. Svensson, Physica B 69, 505 (1991).

    Google Scholar 

  28. J. Mayers, J. Low Temp. Phys. 109, 153 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayers, J. A New Approach to Bose Condensation and Superfluidity in 4He. J Low Temp Phys 109, 135–152 (1997). https://doi.org/10.1007/s10909-005-0080-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-0080-6

Keywords

Navigation