Skip to main content
Log in

Slip in Quantum Fluids

  • Review
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this review we describe theoretical and experimental investigations of general slip phenomena in context with the flow of the quantum liquids 3He, 4He and their mixtures at low temperatures. The phenomenon of slip is related to a boundary effect. It occurs when sufficiently dilute gases flow along the wall of an experimental cell. A fluid is said to exhibit slip when the fluid velocity at the wall is not equal to the wall’s velocity. Such a situation occurs whenever the wall reflects the fluid particles in a specular-like manner, and/or if the fluid is describable in terms of a dilute ordinary gas (classical fluid) or a dilute gas of thermal excitations (quantum fluid). The slip effect in quantum fluids is discussed theoretically on the basis of generalized Landau-Boltzmann transport equations and generalized to apply to a regime of ballistic motion of the quasiparticles in the fluid. The central result is that the transport coefficient of bulk shear viscosity, which typically enters in the Poiseuille flow resistance and the transverse acoustic impedance, has to be replaced by geometry dependent effective viscosity, which depends on the details of the interaction of the fluid particles with the cell walls. The theoretical results are compared with various experimental data obtained in different geometries and for both Bose and Fermi quantum fluids. Good agreement between experiment and theory is found particularly in the case of pure normal and superfluid 3He, with discrepancies probably arising because of deficiencies in characterization of the experimental surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford (1963).

    Google Scholar 

  2. K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960), and references therein.

    Article  Google Scholar 

  3. C. Cercignani, The Boltzmann Equation and Its Application, Springer-Verlag, New York (1988).

    Google Scholar 

  4. D. R. Willis, Phys. Fluids 5, 127 (1962).

    Article  Google Scholar 

  5. D. Einzel, H. Hojgaard Jensen, H. Smith, and P. Wolfle, J. Low Temp. Phys. 53, 695 (1983).

    Article  Google Scholar 

  6. A. Kundt and E. Warburg, Ann. Physik 155, 337 (1875).

    Google Scholar 

  7. J. C. Maxwell, Scientific Papers, Vol. 2, Dover, New York (1953), p. 704.

    Google Scholar 

  8. M. Knudsen, Kinetic Theory of Gases, Methuen, London (1950).

    Google Scholar 

  9. M. N. Kogan, Rarefied Gas Dynamics, Plenum, New York (1969).

    Google Scholar 

  10. P. Welander, Ark. Fys. 7, 507 (1954).

    Google Scholar 

  11. S. Albertoni, C. Cercignani, and L. Gotusso, Phys. Fluids 6, 993 (1963).

    Article  Google Scholar 

  12. L. D. Landau and I. M. Khalatnikov, Sov. Phys. JETP 19, 637 (1949).

    Google Scholar 

  13. K. S. Dy and C. J. Pethick, Phys. Rev. 185, 373 (1969).

    Article  Google Scholar 

  14. H. Hojgaard Jensen, H. Smith, and J. W. Wilkins, Phys. Lett. 27A, 532 (1968).

    Google Scholar 

  15. David Pines, “Highlights of Condensed Matter Physics,” Proc. of the Int. Sch. of Phys., “Enrico Fermi,” Course 89, F. Bassani, F. Fumi, and M. P. Tosi (Eds.), North-Holland, Amsterdam (1985), p. 580.

    Google Scholar 

  16. C. J. Pethick, Phys. Rev. 177, 391 (1969).

    Article  Google Scholar 

  17. V. J. Emery, J. Low Temp. Phys. 22, 467 (1976).

    Article  Google Scholar 

  18. M. Nakagawa, A. Matsubara, O. Ishikawa, T. Hata, and T. Kodama, Phys. Rev. B 54, 6849 (1996).

    Article  Google Scholar 

  19. K. N. Zinoveva, Sov. Phys. JETP 34, 421 (1958).

    Google Scholar 

  20. W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. 7, 299 (1961).

    Article  Google Scholar 

  21. D. S. Betts, D. W. Osborne, B. Welber, and J. Wilks, Phil Mag. 8, 977 (1963).

    Google Scholar 

  22. M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth, J. Low Temp. Phys. 16, 479 (1974).

    Article  Google Scholar 

  23. M. A. Black, H. E. Hall, and K. Thompson, J. Phys. C 4, 129 (1971).

    Google Scholar 

  24. D. N. Paulson, Ph.D. Thesis, University of California, San Diego, unpublished (1974).

  25. T. A. Alvesalo, Yu. D. Anufriyev, H. K. Collan, O. V. Lounasmaa, and P. Wennerstrom, Phys. Rev. Lett. 30, 962 (1973).

    Article  Google Scholar 

  26. D. T. Lawson, W. J. Gully, S. Goldstein, J. D. Reppy, D. M. Lee, and R. C. Richardson, J. Low Temp. Phys. 13, 503 (1973).

    Article  Google Scholar 

  27. J. C. Wheatley, Rev. Mod. Phys. 47, 415 (1975).

    Article  Google Scholar 

  28. J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy, Phys. Rev. Lett. 40, 565 (1978).

    Article  Google Scholar 

  29. J. M. Parpia, D. J. Sandiford, J. E. Berthold, and J. D. Reppy, J. de Phys. 39, C6-35 (1978).

    Google Scholar 

  30. D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972); and D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 29, 920 (1972).

    Article  Google Scholar 

  31. R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).

    Article  Google Scholar 

  32. P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1972).

    Article  Google Scholar 

  33. P. W. Anderson and W. F. Brinkman, Phys. Rev. Lett. 30, 1911 (1973).

    Google Scholar 

  34. D. Einzel and P. Wolfle, J. Low Temp. Phys. 32, 19 (1978); D. Einzel, J. Low Temp. Phys. 54, 427 (1983); D. Einzel, P. Wolfle, and P. J. Hirschfeld, J. Low Temp. Phys. 80, 31 (1990).

    Article  Google Scholar 

  35. R. T. Johnson, R. L. Kleinberg, R. A. Webb, and J. C. Wheatley, J. Low Temp. Phys. 18, 501 (1975).

    Article  Google Scholar 

  36. T. A. Alvesalo, H. K. Collan, M. T. Loponen, and O. V. Lounasmaa, Phys. Rev. Lett. 32, 981 (1974).

    Article  Google Scholar 

  37. P. Bhattacharyya, C. J. Pethick, and H. Smith, Phys. Rev. B 15, 3367 (1977).

    Article  Google Scholar 

  38. C. J. Pethick, H. Smith, and P. Bhattacharyya, Phys. Rev. B 15, 3384 (1977).

    Article  Google Scholar 

  39. C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson, J. Low Temp. Phys. 42, 295 (1981).

    Article  Google Scholar 

  40. M. Morishita, T. Kuroda, A. Sawada, and T. Satoh, J. Low Temp. Phys. 76, 387 (1989).

    Article  Google Scholar 

  41. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Article  Google Scholar 

  42. P. K. Wolfle, J. Low Temp. Phys. 22, 157 (1976).

    Article  Google Scholar 

  43. D. Einzel, Nonhydrodynamic Transport in Normal and Superfluid Fermi Liquids, Lecture Notes in Physics 394, M. J. R. Hoch und R. H. Lemmer (Eds.), Springer-Verlag, Berlin (1991).

    Google Scholar 

  44. Y. Nambu, Phys. Rev. 117, 648 (1960)

    Article  Google Scholar 

  45. O. Betbeder-Matibet and P. Nozieres, Ann. Phys. (N.Y.) 51, 392 (1969); P. K. Wolfle, J. Low Temp. Phys. 22, 157 (1976).

    Article  Google Scholar 

  46. D. Pines and P. Nozieres, The Theory of Quantum Liquids, W. A. Benjamin, New York (1966).

    Google Scholar 

  47. D. Einzel and P. K. Wolfle, J. Low Temp. Phys. 32, 19 (1978).

    Article  Google Scholar 

  48. P. W. Anderson, Phys. Rev. 112, 1900 (1958); N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, A New Method in the Theory of Superconductivity, Consultant Bureau, New York (1959).

    Article  Google Scholar 

  49. D. Einzel, P. K. Wolfle, and P. J. Hirschfeld, J. Low Temp. Phys. 80, 31 (1990).

    Article  Google Scholar 

  50. A. F. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)].

    Google Scholar 

  51. J. Kurkijarvi and D. Rainer, in Modern Problems in Condensed Matter Sciences, W. P. Halperin and L. P. Pitaevskii (Eds.), Elsevier, Amsterdam (1990).

    Google Scholar 

  52. H. Hojgaard Jensen, H. Smith, P. Wolfle, K. Nagai, and T. Maak Bisgaard, J. Low Temp. Phys. 41, 473 (1980).

    Article  Google Scholar 

  53. H. Hojgaard Jensen, H. Smith, and P. Wolfle, J. Low Temp. Phys. 51, 81 (1983).

    Article  Google Scholar 

  54. D. Einzel, J. Low Temp. Phys. 54, 427 (1984).

    Google Scholar 

  55. D. Einzel and J. M. Parpia, Phys. Rev. Lett. 58, 1937 (1987).

    Article  PubMed  Google Scholar 

  56. Weiyi Zhang and J. Kurkijarvi, J. Low Temp. Phys. 73, 483 (1988).

    Article  Google Scholar 

  57. D. Einzel, P. Panzer, and M. Liu, Phys. Rev. Lett. 64, 2269 (1990).

    Article  PubMed  Google Scholar 

  58. G. Zwicknagel and C. Toepffer, Phys. Rev. B 45, 8138 (1992).

    Article  Google Scholar 

  59. G. Eska, K. Neumaier, W. Schoepe, K. Uhlig, and W. Wiedemann, Phys. Rev. B 27, 5534 (1983).

    Article  Google Scholar 

  60. K. Uhlig, private communication.

  61. D. S. Greywall, Phys. Rev. B 33, 7520 (1986).

    Article  Google Scholar 

  62. H. Kojima, D. N. Paulson, and J. C. Wheatley, Phys. Rev. Lett. 32, 1415 (1974).

    Article  Google Scholar 

  63. H. Kojima, D. N. Paulson, and J. C. Wheatley, J. Low Temp. Phys. 21, 283 (1975).

    Article  Google Scholar 

  64. A. W. Yanof and J. D. Reppy, Phys. Rev. Lett. 33, 631, 1031(E), (1974).

    Article  Google Scholar 

  65. T. Chainer, Y. Morii, and H. Kojima, J. Low Temp. Phys. 55, 353, (1984).

    Article  Google Scholar 

  66. J. P. Eisenstein, G. W. Swift, R. E. Packard, Phys. Rev. Lett. 45 1199 (1980); and J. P. Eisenstein, Ph. D. Thesis, Univ. of Calif., Berkely, 1980 (unpublished).

    Article  Google Scholar 

  67. J. M. Parpia and T. L. Rhodes, Phys. Rev. Lett. 51, 805 (1983).

    Article  Google Scholar 

  68. J. E. Jaffe, J. Low Temp. Phys. 37, 567 (1979).

    Article  Google Scholar 

  69. D. C. Carless, H. E. Hall, and J. R. Hook, J. Low Temp. Phys. 50, 583 (1983).

    Article  Google Scholar 

  70. O. Ishikawa, M. Nakagawa, A. Matsubara, T. Hata, and T. Kodama, J. Low Temp. Phys. 101, 799 (1995).

    Article  Google Scholar 

  71. M. Nakagawa, O. Ishikawa, T. Hata, and T. Kodama, Physica B 194–196, 781 (1994).

    Google Scholar 

  72. J. R. Hook, E. Faraj, S. G. Gould, and H. E. Hall, J. Low Temp. Phys. 74, 45 (1989).

    Article  Google Scholar 

  73. D. N. Paulson and J. C. Wheatley, Phys. Rev. Lett. 41, 561 (1978).

    Article  Google Scholar 

  74. Y. A. Ono, J. Hara, K. Nagai, and K. Kawamura, J. Low Temp. Phys. 27, 513 (1977).

    Article  Google Scholar 

  75. P. K. Wolfle and D. Einzel, J. Low Temp. Phys. 32, 39 (1978).

    Article  Google Scholar 

  76. J. Hara, Y. A. Ono, K. Nagai, and K. Kawamura, J. Low Temp. Phys. 39, 603 (1980).

    Article  Google Scholar 

  77. Y. A. Ono, J. Hara, and K. Nagai, J. Low Temp. Phys. 48, 167 (1982).

    Article  Google Scholar 

  78. D. Einzel, J. Low Temp. Phys. 54, 427 (1984).

    Google Scholar 

  79. D. Einzel, P. K. Wolfle, H. Hojgaard Jensen, and H. Smith, Phys. Rev. Lett. 52, 1705 (1984).

    Article  Google Scholar 

  80. D. C. Carless, H. E. Hall, and J. R. Hook, J. Low Temp. Phys. 50, 605 (1983).

    Article  Google Scholar 

  81. E. K. Zeise, Ph.D. Thesis, Cornell University, 1981, (unpublished). See also Figs. 5, 8, 9 of Ref. 83.

  82. J. P. Eisenstein and R. E. Packard, Phys. Rev. Lett. 49, 564 (1982).

    Article  Google Scholar 

  83. H. E. Hall and J. R. Hook, Progress in Low Temperature Physics, IX, D. F. Brewer (Ed.), Elsevier, New York (1986).

    Google Scholar 

  84. H. Brand and M. C. Cross, Phys. Rev. Lett. 49, 1959 (1982).

    Article  Google Scholar 

  85. D. Einzel, 1984 (unpublished).

  86. F. Topsoe and H. Hojgaard Jensen, J. Low Temp. Phys. 55, 469 (1984).

    Article  Google Scholar 

  87. N. Pavloff and J. Treiner, J. Low Temp. Phys. 83, 331 (1991).

    Article  Google Scholar 

  88. M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth, Phys. Rev. Lett. 28, 472 (1972).

    Article  Google Scholar 

  89. H. E. Hall, Proc. of the European Physical Soc., Topical Conf., Haifa 1–4 July, 1974, C. G. Kuper, S. G. Lipson, and M. Revzen (Eds.), John Wiley & Sons, New York (1975), p. 375.

    Google Scholar 

  90. M. J. Lea, P. W. Retz, and P. Fozooni, J. Low Temp. Phys. 66, 325 (1987).

    Article  Google Scholar 

  91. A. M. Guenault, V. Keith, C. J. Kennedy, and G. R. Pickett, Phys. Rev. Lett. 50, 522 (1983).

    Article  Google Scholar 

  92. G. G. Stokes, Mathematical and Physical Papers, Vol. 3, Cambridge University Press, London (1901), p. 38.

    Google Scholar 

  93. A. M. Guenault and G. R. Pickett, Physica 126B, 260 (1984).

    Google Scholar 

  94. M. R. Freeman, Ph.D. Thesis, Cornell University, 1988, (unpublished).

  95. D. A. Ritchie, J. Saunders, and D. F. Brewer, Phys. Rev. Lett. 59, 465 (1987).

    Article  PubMed  Google Scholar 

  96. Chengtai Wang and Lu Yu, Physica B 169, 529 (1991).

    Google Scholar 

  97. R. Konig and F. Pobell, J. Low Temp. Phys. 97, 287 (1994).

    Article  Google Scholar 

  98. S. C. Steel, P. Zawadzki, J. P. Harrison, and A. Sachrajda, Physica B 165 & 166, 599 (1990).

    Google Scholar 

  99. A. L. Fetter and S. Ullah, J. Low Temp. Phys. 70, 515 (1988).

    Article  Google Scholar 

  100. S. M. Tholen and J. M. Parpia, Phys. Rev. Lett. 67, 334 (1991); Phys. Rev. B 47, 319 (1993).

    Article  PubMed  Google Scholar 

  101. S. M. Tholen and J. M. Parpia, Phys. Rev. Lett. 68, 2810 (1992).

    Article  PubMed  Google Scholar 

  102. D. Kim, M. Nakagawa, O. Ishikawa, T. Hata, T. Kodama, and H. Kojima, Phys. Rev. Lett. 71, 1581 (1993).

    Article  PubMed  Google Scholar 

  103. M. J. Lea, P. Fozooni, and P. W. Retz, J. Low Temp. Phys. 54, 303 (1984).

    Article  Google Scholar 

  104. Z. Sh. Nadirashvilli and Dzh. G. Tsakadze, J. Low Temp. Phys. 37, 169 (1979); Sov. J. Low Temp. Phys 4, 711 (1978).

    Article  Google Scholar 

  105. P. H. Roberts and R. J. Donnelly, J. Low Temp. Phys. 15, 1 (1974).

    Article  Google Scholar 

  106. A. P. Borovikov and V. P. Peshkov, Zh. Eksp. Teor. Fiz. 70, 300 (1976); [Sov. Phys. JETP 43, 156 (1976)].

    Google Scholar 

  107. E. L. Andronikashvili, Zh. Eksp. Teor. Fiz. 18, 424 (1948).

    Google Scholar 

  108. A. D. B. Woods and A. C. Hollis-Hallet, Can. J. Phys. 41, 596 (1963).

    Google Scholar 

  109. D. F. Brewer and D. O. Edwards, Proc. R. Soc. A 251, 247 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einzel, D., Parpia, J.M. Slip in Quantum Fluids. J Low Temp Phys 109, 1–105 (1997). https://doi.org/10.1007/s10909-005-0078-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-005-0078-0

Keywords

Navigation