Skip to main content
Log in

The transverse acoustic impedance of dilute solutions of3He in superfluid4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The transverse acoustic impedanceZ=R−iX of dilute solutions of3He in superfluid4He has been measured at a frequency (ω/2π) of 20.5 MHz at temperaturesT from 30 mK to the λ transition at Tλ. The3He concentrations studied werec=0.014, 0.031, 0.053, 0.060, and 0.092 below 1 K, thoughc decreased slightly near the λ point. The impedance was found from the temperature dependence of the quality factor and the resonant frequency of anAT-cut quartz crystal resonator immersed in the liquid. Below 1 K,Z is due to the Fermi gas of3He quasiparticles, and in the collisionless limit, ωτ≫1 (τ is a relaxation time),R remains constant whileX goes to zero. Measurements ofR(c, T) andX(c, T) were analyzed to determine the momentum accommodation coefficient α(c, T) and τ(c, T). The relaxation times were in good agreement with previous work, while α(c, T) was independent ofc, but increased from 0.29±0.03 below 0.1 K to 1.0±0.1 above 0.8 K. Various mechanisms are suggested to explain this. Between 1.0 and 1.5 K the3He quasiparticles and the thermally excited rotons are in the hydrodynamic region, ωτ≪1. Values of the total viscosity η(c, T) were obtained and analyzed to give the3He gas viscosity and the3He-3He and roton-3He scattering rates, both of which were energy-dependent. The superfluid healing length a was also measured. Near the λ point we founda=(0.1±0.03)ε−2/3 nm, where ε=1−T/Tλ, proportional to the phase coherence length ξ. Our data are consistent with the hypothesis that ξρs/T is a universal constant for superfluid dilute solutions, where ρ s is the superfluid density. Between 1.0 and 1.8 K we found thata(c, T) was comparable to measurements in3He-4He films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Lea, P. Fozooni, and P. W. Retz,J. Low Temp. Phys. 54, 303 (1984).

    Google Scholar 

  2. M. J. Lea and P. Fozooni,J. Low Temp. Phys. 56, 25 (1984).

    Google Scholar 

  3. M. J. Lea and P. Fozooni,J. Low Temp. Phys. 62, 55 (1986).

    Google Scholar 

  4. D. S. Spencer, M. J. Lea, and P. Fozooni,Phys. Lett. 109A, 295 (1985).

    Google Scholar 

  5. M. J. Lea and P. W. Retz,Physica 107B, 225 (1981).

    Google Scholar 

  6. M. J. Lea, P. W. Retz, and P. Fozooni,Phys. Lett. 117A, 477 (1986).

    Google Scholar 

  7. A. P. Borovikov and V. P. Peshkov,Zh. Eksp. Teor. Fiz. 70, 300 (1976) [Sov. Phys. JETP 43, 156 (1976)].

    Google Scholar 

  8. E. Webster, G. D. L. Webster, and M. Chester,Phys. Rev. Lett. 42, 243 (1979); G. D. L. Webster, M. Chester, E. Webster, and T. Oestereich,J. Low Temp. Phys. 40, 207 (1980); E. Webster, M. Chester, G. D. L. Webster, and T. Oestereich,Phys. Rev. B 22, 5186 (1980).

    Google Scholar 

  9. M. J. Lea, P. Fozooni, and P. W. Retz, inProceedings International Conference, Ultrasonics 83, Dalhousie University (Butterworths, London, 1983), p. 148.

    Google Scholar 

  10. G. Ahlers,Phys. Rev. A 10, 1670 (1974).

    Google Scholar 

  11. M. P. Bertinat, D. S. Betts, D. F. Brewer, and G. J. Butterworth,Phys. Rev. Lett. 28, 472 (1972).

    Google Scholar 

  12. P. A. Hilton, R. Scherm, and W. G. Stirling,J. Low Temp. Phys. 27, 851 (1977); J. M. Rowe, D. L. Price, and G. E. Ostronski,Phys. Rev. Lett. 31, 510 (1973).

    Google Scholar 

  13. C. Ebner and D. O. Edwards,Phys. Rep. 2C, 78 (1971).

    Google Scholar 

  14. J. S. Brooks and R. J. Donnelly,J. Phys. Chem. Ref. Data 6, 51 (1977).

    Google Scholar 

  15. A. Szprynger,J. Low Temp. Phys. 49, 135 (1982).

    Google Scholar 

  16. D. S. Greywall,Phys. Rev. B 20, 2643 (1979).

    Google Scholar 

  17. V. I. Sobolev and B. N. Esel'son,Zh. Eksp. Teor. Fiz. 60, 24 (1971) [Sov. Phys. JETP 33, 132 (1971)].

    Google Scholar 

  18. F. A. Staas, K. W. Taconis, and K. Fokkens,Physica 26, 669 (1960).

    Google Scholar 

  19. G. Baym and W. F. Saam,Phys. Rev. 171, 172 (1968).

    Google Scholar 

  20. H. E. Hall, inEPS Topical Conference on Liquid and Solid Helium, Haifa, C. G. Kuper, S. G. Lipson, and M. Revsen, eds. (Wiley, New York, 1974), p. 375.

    Google Scholar 

  21. V. N. Zharkov,Zh. Eksp. Teor. Fiz. 33, 929 (1957) [Sov. Phys. JETP 6, 714 (1958)].

    Google Scholar 

  22. A. Bagchi and J. Ruvalds,Phys. Rev. A 8, 1973 (1973).

    Google Scholar 

  23. K. Bedell, D. Pines, and A. Zawadowski,Phys. Rev. B 29, 102 (1984).

    Google Scholar 

  24. K. A. Kuenhold, D. B. Crum, and R. E. Sarwinkki; see ref. 6 of ref. 25.

  25. K. A. Kuenhold and C. Ebner,Phys. Rev. A 9, 2724 (1974).

    Google Scholar 

  26. J. Bardeen, G. Baym, and D. Pines,Phys. Rev. Lett. 17, 372 (1966);Phys. Rev. 156, 207 (1967).

    Google Scholar 

  27. C. M. Surko and R. E. Slusher,Phys. Rev. Lett. 30, 1111 (1973).

    Google Scholar 

  28. R. L. Woerner, D. A. Rockwell, and T. J. Greytak,Phys. Rev. Lett. 30, 1114 (1973).

    Google Scholar 

  29. R. Scherm, W. G. Stirling, and P. A. Hilton,J. Phys. (Paris)39, C6–198 (1978).

    Google Scholar 

  30. G. A. Herzlinger and J. G. King,Phys. Lett. 40A, 65 (1972).

    Google Scholar 

  31. H. T. Tan and C.-W. Woo,Phys. Rev. Lett. 30, 365 (1973).

    Google Scholar 

  32. H. H. Jensen, H. Smith, P. Wolfle, and K. Nagai,J. Low Temp. Phys. 41, 473 (1980); D. Einzel,J. Low Temp. Phys. 53, 695 (1983); H. Smith,Physica 126B, 267 (1984).

    Google Scholar 

  33. P. W. Retz and M. J. Lea,J. Phys. C Solid State Phys. 15, L207 (1982).

  34. R. W. Richardson,Phys. Rev. B 18, 6122 (1978).

    Google Scholar 

  35. L. R. Corruccini,Phys. Rev. B 30, 3735 (1984).

    Google Scholar 

  36. E. G. Flowers and R. W. Richardson,Phys. Rev. B 17, 1238 (1978).

    Google Scholar 

  37. D. Einzel, private communication.

  38. F. Guillon, J. P. Harrison, A. Sachrajda, and D. Atkins,J. Low Temp. Phys. 57, 95 (1984).

    Google Scholar 

  39. T. Oestereich and H. Stenschke,Phys. Rev. B 16, 1966 (1977).

    Google Scholar 

  40. C. K. Carriglia,Opt. Eng. 18, 104 (1979); J. M. Elson and J. M. Bennett,Opt. Eng. 18, 116 (1979).

    Google Scholar 

  41. D. J. Bishop, J. E. Berthold, J. M. Parpia, and J. D. Reppy,Phys. Rev. 24, 5047 (1981).

    Google Scholar 

  42. V. N. Bondarev,Zh. Eksp. Teor. Fiz. 83, 2088 (1982) [Sov. Phys. JETP 56, 1211 (1982)].

    Google Scholar 

  43. K. A. Kuenhold, P. B. Crum, and R. E. Sarwinski,Phys. Lett. A 41, 13 (1972).

    Google Scholar 

  44. G. Baym and C. Ebner,Phys. Rev. 164, 235 (1967).

    Google Scholar 

  45. D. J. Fisk and H. E. Hall, inLow Temperature Physics—LT13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 1, p. 568.

    Google Scholar 

  46. D. S. Betts, D. F. Brewer, and R. Lucking, inLow Temperature Physics—LT13, K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1974), Vol. 1, p. 559.

    Google Scholar 

  47. I. Fujii, A. J. Ikushima, M. F. Fukuhara, and K. Kancko,J. Low Temp. Phys. 57, 163 (1984); E. S. Murdoch and L. R. Corrucini,J. Low Temp. Phys. 46, 219 (1982).

    Google Scholar 

  48. D. R. Ritchie, J. Saunders, and D. F. Brewer, to be published.

  49. E. P. Gross,J. Math. Phys. 4, 195 (1963).

    Google Scholar 

  50. B. I. Halperin and P. C. Hohenburg,Phys. Rev. 177, 952 (1969).

    Google Scholar 

  51. A. A. Sobyanin,Zh. Eksp. Teor. Fiz. 63, 1780 (1972) [Sov. Phys. JETP 36, 941 (1973)].

    Google Scholar 

  52. V. L. Ginzburg and A. A. Sobyanin,J. Low Temp. Phys. 49, 507 (1982).

    Google Scholar 

  53. M. J. Lea and P. Fozooni,Ultrasonics 23, 133 (1985).

    Google Scholar 

  54. C. D. Stockbridge, inVacuum Microbalance Techniques, Behrndt, ed. (Plenum, New York, 1966), Vol. 5, p. 147.

    Google Scholar 

  55. E. F. Ezell, F. Pollock, and J. G. Daunt,J. Low Temp. Phys. 42, 47 (1981).

    Google Scholar 

  56. G. Ahlers,Phys. Rev. A 10, 1670 (1974).

    Google Scholar 

  57. G. G. Ihas and F. Pobell,Phys. Rev. A 9, 1278 (1974).

    Google Scholar 

  58. W. C. Thomlinson, G. G. Ihas, and F. Pobell,Phys. Rev. Lett. 31, 1284 (1973).

    Google Scholar 

  59. P. C. Schubert and W. Zimmermann,J. Low Temp. Phys. 44, 177 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lea, M.J., Retz, P.W. & Fozooni, P. The transverse acoustic impedance of dilute solutions of3He in superfluid4He. J Low Temp Phys 66, 325–356 (1987). https://doi.org/10.1007/BF00682260

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00682260

Keywords

Navigation