Skip to main content
Log in

Resource-Dependent Giving-Up Time of the Predatory Mite, Phytoseiulus persimilis

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

We examined the effect of prey (Tetranychus urticae) egg density on leaving rate of the predatory mite, Phytoseiulus persimilis, from leaf disks using predators with different feeding experiences and levels of external volatile cues related to their prey. Predators stayed longer on disks with prey eggs than on those without prey eggs. However, at each prey egg density predators stayed longer in the absence of prey-related volatiles from an external source. Starved predators stayed longer in a prey patch than those that had not experienced starvation. At each prey density, starved P. persimilis consumed a greater proportion of prey eggs than satiated predators. The total prey consumption of starved predators appears to be related to their longer residence time on source disks compared to satiated predators and also the per capita consumption rate was greater for starved predators compared to satiated predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  • Bernstein, C. (1983). Some aspects of Phytoseiulus persimilis (Acarina: Phytoseiidae) dispersal behavior. Entomophaga 28: 185–198.

    Article  Google Scholar 

  • Bernstein, C. (1984). Prey and predator emigration responses in the acarine system Phytoseiulus persimilis-Tetranychus urticae. Oecologia 61: 134–142.

    Article  Google Scholar 

  • Dicke, M., van Beek, T. A., Posthumus, M. A., Ben Dom, N., van Bokhoven, H., and de Groot, A. E. (1990a). Isolation and identification of volatile kairomone that affects acarine predator-prey interactions: involvement of host plant in its production. J. Chem. Ecol. 16: 381–396.

    Article  CAS  Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. (1990b). Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J. Chem. Ecol. 16: 3091–3118.

    Article  CAS  Google Scholar 

  • Eveleigh, E. S., and Chant, D. A. (1982). Experimental studies on acarine predator-prey interactions: The response of predators to prey distribution in a homogeneous area (Acarina: Phytoseiidae). Can. J. Zool. 60: 639–647.

    Article  Google Scholar 

  • Fernando, M. H. J. P., and Hassell, M. P. (1980). Predator-prey responses in acarine system. Researches on Pop. Ecol. 22: 301–322.

    Google Scholar 

  • Hopper, K. R., Roush, R. T., and Powell, W. (1993). Management of genetics of biological-control introductions. Ann. Rev. Entomol. 38: 27–51.

    Article  Google Scholar 

  • Janssen, A. (1999). Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol. Exp. Appl. 90: 191–198.

    Article  Google Scholar 

  • Janssen, A., Bruin, J., Jacobs, G., Schraag, R., and Sabelis, M. W. (1997). Predators use volatiles to avoid prey patches with conspecifics. J. Animal Ecol. 66: 223–232.

    Article  Google Scholar 

  • Jia, F., Margolies, D. C., Boyer, J. E. Jr., and Charlton, R. E. (2002). Genetic variation among foraging traits in inbred lines of a predatory mite. Heredity 88: 371–379.

    Article  CAS  Google Scholar 

  • Lewis, W. J., and Martin, W. R. Jr. (1990). Semiochemicals for use with parasitoids: Status and future. J. Chem. Ecol. 16: 3067–3089.

    Article  CAS  Google Scholar 

  • Lewis, W. J., Vet, L. E. M., Tumlinson, J. H., van Lenteren, J. C., and Papaj, D. R. (1990). Variations in parasitoid foraging behavior: Essential element of a sound biological control theory. Environ. Entomol. 19: 1183–1193.

    Google Scholar 

  • Maeda, T., Takabayashi, J., Yano, S., and Takafuji, A. (1998). Factors affecting the resident time of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) in a prey patch. Appl. Entomol. Zool. 33: 573–576.

    Google Scholar 

  • Maeda, T., and Takabayashi, J. (2001). Patch leaving decision of the predatory mite Amblyseius womersleyi (Acari: Phytoseiidae) based on multiple signals form both inside and outside a prey patch. J. Insect Behav. 14: 829–839.

    Article  Google Scholar 

  • Maeda, T., and Takabayashi, J. (2005). Effect of foraging experiences on residence time of the predatory mite Neoseiulus womersleyi in a prey patch. J. Insect Behav. 18: 323–333.

    Article  Google Scholar 

  • Margolies, D. C., Boyer, J. E. Jr., Sabelis, M. W. (1997). Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitation. J. Insect Behav. 10: 715–729.

    Google Scholar 

  • Mayland, H. J. (1998). Effects of prey-induced plant volatiles on search behaviors of the predatory mite, Phytoseiulus persimilis. M.S. Thesis, Kansas State University, Manhattan, KS, p. 63.

  • Mayland, H., Margolies, D. C., and Charlton, R. E. (2000). Local and distant prey-related cues influence when an acarine predator leaves a patch. Entomol. Exp. Appl. 96: 245–252.

    Article  Google Scholar 

  • Pels, B., de Roos, A. M., and Sabelis, M. W. (2002). Evolutionary dynamics of prey exploitation in a metapopulation of predators. Am. Nat. 159: 172–189.

    Article  PubMed  Google Scholar 

  • Sabelis, M. W., Vermaat, J. E., and Groeneveld, A. (1984). Arrestment responses of the predatory mite, Phytoseiulus persimilis, to steep odour gradients of kairomones. Physiol. Entomol. 9: 437–446.

    CAS  Google Scholar 

  • Sabelis, M. W., and Afman, B. P. (1994). Synomone—induced suppression of take-off in the phytoseiid mite, Phytoseiulus persimilis Athias-Henriot. Exp. Appl. Acarol. 18: 711–721.

    Article  Google Scholar 

  • Sabelis, M. W., and Dicke, M. (1985). Long-range dispersal and searching behavior. In Helle, W. and Sabelis, M. W. (eds.), Spider Mites: Their Biology, Natural Enemies and Control, Elsevier, Amsterdam, pp. 141–159.

    Google Scholar 

  • Sabelis, M. W., and Van Der Meer, J. J. (1986). Local dynamics of the interaction between predatory mites and two-spotted spider mites. In Metz, J. A. J., and Diekmann, O. (eds.), Dynamics of Physiologically Structured Populations, Springer, Berlin, pp. 322–344.

    Google Scholar 

  • Sabelis, M. W., and Van Der Weel, J. J. (1993). Anemotactic responses of the predatory mite, Phytoseiulus persimilis Athias-Henriot and their role in prey finding. Exp. Appl Acarol. 17: 521–529.

    Article  Google Scholar 

  • SAS Institute (2001). SAS user’s guide: statistics, version 8.2 SAS Institute, Cary NC.

  • Stephens, D. W., and Krebs, J. R. (1986). Foraging theory, Princeton University Press, Princeton, NJ, p. 247.

  • Takafuji, A. (1977). The effect of the rate of successful dispersal of a phytoseiid mite, Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) on the persistence in the interactive system between the predator and its prey. Res. Popul. Ecol. 18: 210–222.

    Article  Google Scholar 

  • Takafuji, A., and Chant, D. A. (1976). Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their response to the density of their prey. Res. Popul. Ecol. 17: 255–310.

    Google Scholar 

  • Takafuji, A., Tsuda, Y., and Mori, T. (1983). System behaviour in predator-prey interaction, with special reference to acarine predator-prey systems. Res. Popul. Ecol. Suppl. 3: 75–92.

    Google Scholar 

  • Tumlinson, J. H. (1988). Contemporary frontiers in insect semiochemical research. J. Chem. Ecol. 14: 2109–2130.

    Article  CAS  Google Scholar 

  • van Lenteren, J. C., and Woets, J. (1988). Biological and integrated pest control in greenhouses. Ann. Rev. Entomol. 33: 239–269.

    Article  Google Scholar 

  • Vanas, V., Enigl, E., Walzer, A., and Schausberger, P. (2006). The predatory mite Phytoseiulus persimilis adjusts patch-leaving to own and progeny needs. Exp. Appl. Acarol. 39: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Vet, L. E. M., and Dicke, M. (1992). Ecology of infochemical use by natural enemies in a tritrophic context. Ann. Rev. Entomol. 37: 141–172.

    Article  Google Scholar 

  • Waage, J. K. (1979). Foraging for patchily-distributed hosts by the parasitoid. Nemeritis canescens. J. Anim. Ecol. 48: 353–371.

    Article  Google Scholar 

  • Zhang, Z.-Q., Sanderson, J. P., and Nyrop, J. P. (1992). Foraging time and spatial patterns of predation in experimental populations. Oecologia. 90: 185–196.

    Google Scholar 

  • Zemek, R., and Nachman, G. (1998). Interactions in a tritrophic acarine predator-prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acarina: Phytoseiidae). Exp. Appl. Acarol. 22: 259–278.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Xiaoli Wu and Nick Timmons for their assistance in conducting the research, and Anthony Joerns for comments on an earlier draft of this paper. This is Contribution No. 06-267-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Margolies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachappa, P., Margolies, D.C. & Nechols, J.R. Resource-Dependent Giving-Up Time of the Predatory Mite, Phytoseiulus persimilis . J Insect Behav 19, 741–752 (2006). https://doi.org/10.1007/s10905-006-9059-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-006-9059-7

KEY WORDS

Navigation