Skip to main content
Log in

Heterojunction T-ZIF-8/SnO2 Composite Photocatalysts by Sol–gel Method for CO2 Reduction

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Artificial photocatalysis is widely used to capture CO2 for conversion into a range of usable carbon-containing fuels. SnO2 and T-ZIF-8 materials have attracted much attention due to their distinctive physicochemical properties. In this paper, addressing the low efficiency of SnO2 and T-ZIF-8 in the photocatalytic reduction of CO2, a novel heterojunction composite photocatalyst of SnO2 and T-ZIF-8 was designed and synthesized using the sol–gel method. This approach combines the respective advantages of SnO2 and T-ZIF-8 materials. The resulting composite material has good photoresponsivity in the range of 200 ~ 800 nm. The conversion of CO2 to CO and CH4 under visible light irradiation is improved in T-ZIF-8/SnO2 composites compared to SnO2 and T-ZIF-8. The CO production rate reaches up to 16.6 µmol·g−1·h−1, and the CH4 production rate reaches up to 14.7 µmol·g−1·h−1, with a selectivity for CH4 as high as 77%. Mechanistic analysis indicates that the T-ZIF-8/SnO2 heterojunction significantly promotes the separation of photogenerated electron–hole pairs in the photocatalyst. This work presents an effective method for enhancing the catalytic activity of ZIF-based materials, opening up a new pathway for the environmentally friendly conversion of CO2 into clean fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. F. Al-dolaimy, M.H. Kzar, S.A. Hussein, H. Bahir, A.-H.M. Hamoody, A.H. Dawood, M.T. Qasim, A.T. Kareem, A.H. Alawadi, A. Alsaalamy, R. Riyad, Incorporating of Cobalt into UiO-67 Metal-Organic Framework for Catalysis CO2 Transformations: An Efficient Bi-functional Approach for CO2 Insertion and Photocatalytic Reduction. J. Inorg. Organomet. Polym Mater. 34(2), 864–873 (2024). https://doi.org/10.1007/s10904-023-02860-0

    Article  CAS  Google Scholar 

  2. J. Artz, T.E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chem. Rev. 118(2), 434–504 (2018). https://doi.org/10.1021/acs.chemrev.7b00435

    Article  CAS  PubMed  Google Scholar 

  3. J. Low,J. Yu,M. Jaroniec,S. Wageh, A. A. Al‐Ghamdi, Heterojunction Photocatalysts. Advanced Materials 2017, 29 (20).https://doi.org/10.1002/adma.201601694.

  4. C. Yang, Q. Li, Y. Xia, K. Lev, M. Li, Enhanced visible-light photocatalytic CO2 reduction performance of Znln2S4 microspheres by using CeO2 as cocatalyst. Appl. Surf. Sci. 464, 388–395 (2019). https://doi.org/10.1016/j.apsusc.2018.09.099

    Article  CAS  Google Scholar 

  5. M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chem. Rev. 114(3), 1709–1742 (2014). https://doi.org/10.1021/cr4002758

    Article  CAS  PubMed  Google Scholar 

  6. M. Burke, S.M. Hsiang, E. Miguel, Global non-linear effect of temperature on economic production. Nature 527(7577), 235–239 (2015). https://doi.org/10.1038/nature15725

    Article  CAS  PubMed  Google Scholar 

  7. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-Based Heterostructured Photocatalysts. Adv Energy Mater 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  8. Y. Jiang, I. Lawan, W. Zhou, M. Zhang, G.F. Fernando, L. Wang, Z. Yuan, Synthesis, properties and photocatalytic activity of a semiconductor/cellulose composite for dye degradation-a review. Cellulose 27(2), 595–609 (2020). https://doi.org/10.1007/s10570-019-02851-w

    Article  CAS  Google Scholar 

  9. R.M. Mohamed, I.A. Mkhalid, M. Alhaddad, A. Basaleh, K.A. Alzahrani, A.A. Ismail, Facile Fabrication of Pt-Doped Mesoporous ZnS as High Efficiency for Photocatalytic CO2 Conversion. J. Inorg. Organomet. Polym Mater. 31(12), 4637–4647 (2021). https://doi.org/10.1007/s10904-021-02064-4

    Article  CAS  Google Scholar 

  10. E. Dhivya, D. Magadevan, Y. Palguna, T. Mishra, N. Aman, Synthesis of titanium based hetero MOF photocatalyst for reduction of Cr (VI) from wastewater - ScienceDirect. J. Environ. Chem. Eng. 7(4), 103240–103240 (2019)

    Article  CAS  Google Scholar 

  11. J.C. Cardoso, S. Stulp, J.F. de Brito, J.B.S. Flor, R.C.G. Frem, M.V.B. Zanoni, MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media. Appl. Catal. B: Environ. 225, 563–573 (2018). https://doi.org/10.1016/j.apcatb.2017.12.013

    Article  CAS  Google Scholar 

  12. W. He, Y. Wei, J. Xiong, Z. Tang, Y. Wang, X. Wang, J. Deng, X. Yu, X. Zhang, Z. Zhao, Boosting selective photocatalytic CO2 reduction to CO over Dual-core@shell structured Bi2O3/Bi2WO6@g-C3N4 catalysts with strong interaction interface. Sep. Purif. Technol. 300, 121850 (2022). https://doi.org/10.1016/j.seppur.2022.121850

    Article  CAS  Google Scholar 

  13. S. Subudhi, S.P. Tripathy, K. Parida, Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors. Catal. Sci. Technol. 11(2), 392–415 (2021). https://doi.org/10.1039/D0CY02034F

    Article  CAS  Google Scholar 

  14. J. Ye, J. He, S. Wang, X. Zhou, Y. Zhang, G. Liu, Y. Yang, Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light. Sep. Purif. Technol. 220, 8–15 (2019). https://doi.org/10.1016/j.seppur.2019.03.042

    Article  CAS  Google Scholar 

  15. P. Behera, S. Subudhi, S.P. Tripathy, K. Parida, MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord. Chem/ Rev. 456, 214392 (2022). https://doi.org/10.1016/j.ccr.2021.214392

    Article  CAS  Google Scholar 

  16. R. Kumar, K. Jayaramulu, T.K. Maji, C.N.R. Rao, Hybrid nanocomposites of ZIF-8 with graphene oxide exhibiting tunable morphology, significant CO2 uptake and other novel properties. Chem. Commun. 49(43), 4947–4949 (2013). https://doi.org/10.1039/C3CC00136A

    Article  CAS  Google Scholar 

  17. J. Li, L. Liu, Q. Liang, M. Zhou, C. Yao, S. Xu, Z. Li, Core-shell ZIF-8@MIL-68(In) derived ZnO nanoparticles-embedded In2O3 hollow tubular with oxygen vacancy for photocatalytic degradation of antibiotic pollutant. J. Hazard. Mater. 414, 125395 (2021). https://doi.org/10.1016/j.jhazmat.2021.125395

    Article  CAS  PubMed  Google Scholar 

  18. S. Prakash Tripathy, S. Subudhi, S. Das, M. Kumar Ghosh, M. Das, R. Acharya, R. Acharya, K. Parida, Hydrolytically stable citrate capped Fe3O4@UiO-66-NH2 MOF: A hetero-structure composite with enhanced activity towards Cr (VI) adsorption and photocatalytic H2 evolution. J. Colloid Interface Sci. 606, 353–366 (2022). https://doi.org/10.1016/j.jcis.2021.08.031

    Article  CAS  PubMed  Google Scholar 

  19. H.B. Zheng, D. Wu, Y.I. Wang, X.P. Liu, P.Z. Gao, W. Liu, J. Wen, E.V. Rebrov, One-step synthesis of ZIF-8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis. J. Alloys Compd. 838, 155219 (2020). https://doi.org/10.1016/j.jallcom.2020.155219

    Article  CAS  Google Scholar 

  20. X. Yang, Z. Wen, Z. Wu, X. Luo, Synthesis of ZnO/ZIF-8 hybrid photocatalysts derived from ZIF-8 with enhanced photocatalytic activity. Inorg. Chem. Front. 5(3), 687–693 (2018). https://doi.org/10.1039/C7QI00752C

    Article  CAS  Google Scholar 

  21. P. Behera, A. Ray, S.P. Tripathy, L. Acharya, S. Subudhi, K. Parida, ZIF-8 derived porous C, N co-doped ZnO modified B-g-C3N4: A Z-Scheme charge dynamics approach operative towards photocatalytic hydrogen evolution and ciprofloxacin degradation. J. Photochem. Photobiol A: Chem. 436, 114415 (2023). https://doi.org/10.1016/j.jphotochem.2022.114415

    Article  CAS  Google Scholar 

  22. P. Behera, A. Ray, S.P. Tripathy, S. Subudhi, L. Acharya, K. Parida, NixPy Cocatalyst-Loaded MOF-Derived C/N–ZnO@B-Doped g-C3N4-Based Z-Scheme Nanohybrid: A Combinatorically Enhanced Ternary Photocatalyst towards Hydrogen Peroxide and Hydrogen Production. ACS Applied Engineering Materials 1(11), 2876–2891 (2023). https://doi.org/10.1021/acsaenm.3c00403

    Article  CAS  Google Scholar 

  23. S.P. Tripathy, S. Subudhi, A. Ray, P. Behera, A. Bhaumik, K. Parida, Mixed-Valence Bimetallic Ce/Zr MOF-Based Nanoarchitecture: A Visible-Light-Active Photocatalyst for Ciprofloxacin Degradation and Hydrogen Evolution. Langmuir 38(5), 1766–1780 (2022). https://doi.org/10.1021/acs.langmuir.1c02873

    Article  CAS  PubMed  Google Scholar 

  24. Z. Pei,P. Fei,A. Zhang,J. Guo,J. Hao,J. Jia,H. Dong,Q. Shen,L. Wei,H. Jia, B. Xu, Thermal oxygen sensitization modification and its visible light catalytic antibacterial performance for ZIF-8. Journal of Alloys and Compounds 2022, 904.https://doi.org/10.1016/j.jallcom.2022.164055.

  25. T. Wang, Y. Wang, M. Sun, A. Hanif, H. Wu, Q. Gu, Y.S. Ok, D.C.W. Tsang, J. Li, J. Yu, J. Shang, Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem. Sci. 11(26), 6670–6681 (2020). https://doi.org/10.1039/d0sc01397h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. B. Domínguez Espíndola,D. M. Arias,C. Rodríguez-González, P. J. Sebastian, A critical review on advances in TiO2-based photocatalytic systems for CO2 reduction. Applied Thermal Engineering 2022, 216.https://doi.org/10.1016/j.applthermaleng.2022.119009.

  27. Q. Liu,Z. Low,L. Li,A. Razmjou,K. Wang,J. Yao, H. Wang, ZIF-8/Zn2GeO4 nanorods with an enhanced CO2 adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. Journal of Materials Chemistry A 2013, 1 (38).https://doi.org/10.1039/c3ta12433a.

  28. S. Liu, J. Wang, J. Yu, ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO2 reduction performance. RSC Adv. 6(65), 59998–60006 (2016). https://doi.org/10.1039/c6ra11264a

    Article  CAS  Google Scholar 

  29. S. Subudhi, S.P. Tripathy, K. Parida, Metal oxide integrated metal organic frameworks (MO@MOF): rational design, fabrication strategy, characterization and emerging photocatalytic applications. Inorganic Chemistry Frontiers 8(6), 1619–1636 (2021). https://doi.org/10.1039/D0QI01117G

    Article  CAS  Google Scholar 

  30. G. Liu, G. Hou, X. Mao, X. Qi, Y. Song, X. Ma, J. Wu, G. Luo, H. Yao, Q. Liu, Rational design of CeO2/Bi7O9I3 nO2 Integrflower-like nanosphere with Z-scheme heterojunction and oxygen vacancy for enhancing photocatalytic activity. Chem. Eng. J. 431, 133254 (2022). https://doi.org/10.1016/j.cej.2021.133254

    Article  CAS  Google Scholar 

  31. S. Kumar, R.B. Choudhary, FRET Mechanism of SnO2 Integrated Luminescent g-C3N4 Nanocomposite and Its Robust Chemical, Optical and Thermal States for Emissive Layer Application. J. Inorg. Organomet. Polym Mater. 33(2), 599–610 (2023). https://doi.org/10.1007/s10904-022-02524-5

    Article  CAS  Google Scholar 

  32. G.K. Pradhan, K.H. Reddy, K.M. Parida, Facile fabrication of mesoporous α-Fe2O3/SnO2 nanoheterostructure for photocatalytic degradation of malachite green. Catalysis Today 224, 171–179 (2014). https://doi.org/10.1016/j.cattod.2013.10.038

    Article  CAS  Google Scholar 

  33. Z. Yang, G. Du, C. Feng, S. Li, Z. Chen, P. Zhang, Z. Guo, X. Yu, G. Chen, S. Huang, H. Liu, Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries. Electrochim. Acta 55(19), 5485–5491 (2010). https://doi.org/10.1016/j.electacta.2010.04.045

    Article  CAS  Google Scholar 

  34. B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, H.-J. Lai, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators, B Chem. 101(1–2), 81–89 (2004). https://doi.org/10.1016/j.snb.2004.02.028

    Article  CAS  Google Scholar 

  35. J. Paajanen, S. Weintraub, S. Lönnrot, M. Heikkilä, M. Vehkamäki, M. Kemell, T. Hatanpää, M. Ritala, R. Koivula, Novel electroblowing synthesis of tin dioxide and composite tin dioxide/silicon dioxide submicron fibers for cobalt(ii) uptake. RSC Adv. 11(25), 15245–15257 (2021). https://doi.org/10.1039/d1ra01559a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. X. Huang, H. Wang, C. Niu, A.L. Rogach, SnO2 nanoarrays for energy storage and conversion. CrystEngComm 17(30), 5593–5604 (2015). https://doi.org/10.1039/c5ce00867k

    Article  CAS  Google Scholar 

  37. Y. Liang, Z. Xiang, X. Zhao, F. Xiang, P. Yan, T. Yu, X. Li, Y. Yang, Crystal facet effect of tin dioxide nanocrystals on photocatalytic degradation and photo-assisted gas sensing properties. CrystEngComm 24(21), 3865–3871 (2022). https://doi.org/10.1039/d2ce00474g

    Article  CAS  Google Scholar 

  38. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A 3(6), 2485–2534 (2015). https://doi.org/10.1039/c4ta04461d

    Article  CAS  Google Scholar 

  39. P. Zhou, J. Yu, M. Jaroniec, All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 26(29), 4920–4935 (2014). https://doi.org/10.1002/adma.201400288

    Article  CAS  PubMed  Google Scholar 

  40. Y. Huang, Y. Zhang, X. Chen, D. Wu, Z. Yi, R. Cao, Bimetallic alloy nanocrystals encapsulated in ZIF-8 for synergistic catalysis of ethylene oxidative degradation. Chem. Commun. (Camb.) 50(70), 10115–10117 (2014). https://doi.org/10.1039/c4cc04479g

    Article  CAS  PubMed  Google Scholar 

  41. D. Jiang, Y. Xu, D. Wu, Y. Sun, Isocyanate-modified TiO2 visible-light-activated photocatalyst. Appl. Catal. B 88(1–2), 165–172 (2009). https://doi.org/10.1016/j.apcatb.2008.09.021

    Article  CAS  Google Scholar 

  42. K.N. Van, H.T. Huu, V.N. Nguyen Thi, T.L. Le Thi, D.H. Truong, T.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 289, 133120 (2022). https://doi.org/10.1016/j.chemosphere.2021.133120

    Article  CAS  PubMed  Google Scholar 

  43. Y. Zhang, M. Zhu, S. Zhang, Y. Cai, Z. Lv, M. Fang, X. Tan, X. Wang, Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Appl. Catal. B 279, 119390–119400 (2020). https://doi.org/10.1016/j.apcatb.2020.119390

    Article  CAS  Google Scholar 

  44. Y. Xiao, A. Abulizi, K. Okitsu, T. Ren, Facile fabrication of SnO2 modified hierarchical BiOI S-scheme heterojunction photocatalyst with efficient activity for carbon dioxide reduction. J. Ind. Eng. Chem. 125, 317–324 (2023). https://doi.org/10.1016/j.jiec.2023.05.041

    Article  CAS  Google Scholar 

  45. I.M. Costa, Y.N. Colmenares, P.S. Pizani, E.R. Leite, A.J. Chiquito, Sb doping of VLS synthesized SnO2 nanowires probed by Raman and XPS spectroscopy. Chem. Phys. Lett. 695, 125–130 (2018). https://doi.org/10.1016/j.cplett.2018.02.014

    Article  CAS  Google Scholar 

  46. A.M. Volosin, S. Sharma, C. Traverse, N. Newman, D.-K. Seo, One-pot synthesis of highly mesoporous antimony-doped tin oxide from interpenetrating inorganic/organic networks. J. Mater. Chem. 21(35), 13232–13240 (2011). https://doi.org/10.1039/c1jm12362a

    Article  CAS  Google Scholar 

  47. Y. Li, S. Gao, B. Zhang, H. Mao, X. Tang, Electrospun Ag-Doped SnO2 Hollow Nanofibers with High Antibacterial Activity. Electron. Mater. Lett. 16(3), 195–206 (2020). https://doi.org/10.1007/s13391-020-00203-6

    Article  CAS  Google Scholar 

  48. R. Chandra, M. Nath, Facile synthesis of ZnO-SnO2 anchored ZIF-8 nanocomposite: a potential photocatalyst. Environ. Sci. Pollut. Res. 27(20), 25103–25118 (2020). https://doi.org/10.1007/s11356-020-08936-5

    Article  CAS  Google Scholar 

  49. J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A Review of Direct Z-Scheme Photocatalysts. Small Methods 1(5), 1700080 (2017). https://doi.org/10.1002/smtd.201700080

    Article  CAS  Google Scholar 

  50. J. Yu, Q. Li, S. Liu, M. Jaroniec, Ionic-liquid-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visible-light photocatalytic activity. Chemistry 19(7), 2433–2441 (2013). https://doi.org/10.1002/chem.201202778

    Article  CAS  PubMed  Google Scholar 

  51. N. Ojha, A.K. Metya, S. Kumar, Influence of plasmonic metals (Ag, Cu) on overall CO2 photoreduction activity of β-Ga2O3. Appl. Surf. Sci. 580, 152315 (2022). https://doi.org/10.1016/j.apsusc.2021.152315

    Article  CAS  Google Scholar 

  52. X. Wang, Z. Cao, B. Du, Y. Zhang, R. Zhang, Visible-light-driven zeolite imidazolate frameworks-8@ZnO composite for heavy metal treatment. Compos. B Eng. 183, 107685–107693 (2020). https://doi.org/10.1016/j.compositesb.2019.107685

    Article  CAS  Google Scholar 

  53. F.F. Abdi, R. van de Krol, Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes. The Journal of Physical Chemistry C 116(17), 9398–9404 (2012). https://doi.org/10.1021/jp3007552

    Article  CAS  Google Scholar 

  54. X. Liu, M. Ye, S. Zhang, G. Huang, C. Li, J. Yu, P.K. Wong, S. Liu, Enhanced photocatalytic CO2 valorization over TiO2 hollow microspheres by synergetic surface tailoring and Au decoration. Journal of Materials Chemistry A 6(47), 24245–24255 (2018). https://doi.org/10.1039/c8ta09661a

    Article  CAS  Google Scholar 

  55. Y. Xie, Y. Zhuo, S. Liu, Y. Lin, D. Zuo, X. Wu, C. Li, P.K. Wong, Ternary g-C3N4/ZnNCN@ZIF-8 Hybrid Photocatalysts with Robust Interfacial Interactions and Enhanced CO2 Reduction Performance. Solar RRL 4(8), 1900440 (2020). https://doi.org/10.1002/solr.201900440

    Article  CAS  Google Scholar 

  56. N. Ojha, K. Thakkar, A. Bajpai, K. Joshi, S. Kumar, Photoinduced CO2 and N2 reductions on plasmonically enabled gallium oxide. Journal of Colloid and Interface Science 629, 654–666 (2023). https://doi.org/10.1016/j.jcis.2022.09.097

    Article  CAS  PubMed  Google Scholar 

  57. W. Li, Y. Chen, W. Han, S. Liang, Y. Jiao, G. Tian, ZIF-8 derived hierarchical ZnO@ZnFe2O4 hollow polyhedrons anchored with CdS for efficient photocatalytic CO2 reduction. Sep. Purif. Technol. 309, 122970 (2023). https://doi.org/10.1016/j.seppur.2022.122970

    Article  CAS  Google Scholar 

  58. Y. Wu, L. Yan, Y. Yu, C. Jing, Photocatalytic CO2 reduction to CH4 on iron porphyrin supported on atomically thin defective titanium dioxide. Catal. Sci. Technol. 11(18), 6103–6111 (2021). https://doi.org/10.1039/d1cy00750e

    Article  CAS  Google Scholar 

  59. N. Sun, M. Zhou, X. Ma, Z. Cheng, J. Wu, Y. Qi, Y. Sun, F. Zhou, Y. Shen, S. Lu, Self-assembled spherical In2O3/BiOI heterojunctions for enhanced photocatalytic CO2 reduction activity. Journal of CO2 Utilization 65, 102220 (2022). https://doi.org/10.1016/j.jcou.2022.102220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the projects of the Research and development project of New Materials and Chemical Engineering Research Institute of Shanxi Zhejiang University (Grant No.2021SX-AT010), the National Natural Science Foundation of China (Grant No.21972103).

Funding

Funding was provided by Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant No. 2021SX-AT010), the National Natural Science Foundation of China (Grant No. 21972103).

Author information

Authors and Affiliations

Authors

Contributions

Zihao Wang: Investigation, Data curation, Writing-original draft. Xuemei Liu: Investigation, Data curation, Writing-original draft. Aiqin Zhang: Supervision, Funding acquisition, Writing-review & editing. Hui Zhao: Investigation, Formal analysis. Hailiang Dong: Investigation, Formal analysis. Husheng Jia: Conceptualization, Supervision, Writing—review & editing. Bingshe Xu: Funding acquisition, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Aiqin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 373 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, X., Zhang, A. et al. Heterojunction T-ZIF-8/SnO2 Composite Photocatalysts by Sol–gel Method for CO2 Reduction. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03131-2

Keywords

Navigation