Skip to main content

Advertisement

Log in

Abstract

In this work, a series of functionalized MWNTs/EP composites were fabricated by epoxy resins (EP) and functionalized multi-walled carbon nanotubes (MWNTs). The dispersion of MWNTs in the EP matrix, through different methods, i.e., stirring, solvent, and emulsion dispersion, was investigated. Results show that the homogeneous dispersion of the MWNTs/EP composites was achieved, and the glass transition temperature (Tg) increased to 119℃. The tensile strength and modulus of elasticity were 1.690 GPa and 62.5 MPa, respectively, and the impact strength reached 4.97 KJ/m2 for the MWNTs/EP, with a 6 wt% MWNT loading. In addition, the resistivity of the MWNTs/EP composites decreased from 1013 to 106 Ω·cm in the initial EP matrix. The incorporation of MWNTs and a novel dispersion method effectively modified the mechanical and electrical properties of the initial EP matrix, and improved the inherent structural defects of the initial EP matrix, reducing the brittleness and impact resistance. With further research, this composite material has the potential to further broaden the application field of novel materials based on the EP matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that has been used is confidential.

References

  1. I.E. Uflyand, Irzhak. VI, J. Polym. Res. 28, 400 (2021). https://doi.org/10.1007/s10965-021-02783-9

    Article  CAS  Google Scholar 

  2. Y. Wang, Z.X. Shi, J. Yin, J. Phys. Chem. C 114, 19621 (2010). https://doi.org/10.1021/jp107151e

    Article  CAS  Google Scholar 

  3. T.Y. Yung, Y.C. Lu, J.S. Chen, Y.W. Cheng, T.Y. Lui, Coat. 11, 35 (2021). https://doi.org/10.3390/coatings11010035

    Article  CAS  Google Scholar 

  4. J.Y. Qin, H.P. Zhao, Z.L. Qin, W.C. Zhang, R.J. Yang, Polym. Compos. 42, 3445 (2021). https://doi.org/10.1002/pc.26070

    Article  CAS  Google Scholar 

  5. M. Ochi, D. Nii, Y. Suzuki, M. Harada, J. Mater. Sci. 45, 2655 (2010). https://doi.org/10.1007/s10853-010-4244-7

    Article  CAS  Google Scholar 

  6. M. Derradji, T.T. Feng, H. Wang, N. Ramdani, T. Zhang, J. Wang, A. Henniche, W.B. Liu, Iran. Polym. J. 25, 503 (2016). https://doi.org/10.1007/s13726-016-0442-8

    Article  CAS  Google Scholar 

  7. H. Ebrahimi, H. Roghani-Mamaqani, M. Salami-Kalajahi, J. Therm. Anal. Calorim. 132, 513 (2018). https://doi.org/10.1007/s10973-018-6992-6

    Article  CAS  Google Scholar 

  8. X.B. Li, W.X. Xia, L.M. Shen, W.M. Tan, X.L. Lou, Mater. Lett. 349, 134790 (2023). https://doi.org/10.1016/j.matlet.2023.134790

    Article  CAS  Google Scholar 

  9. E. Dervishi, Z.R. Li, Y. Li, V. Saini, A.R. Biris, D. Lupu, A.S. Biris, Part. Sci. Technol. 27, 107 (2009). https://doi.org/10.1080/02726350902775962

    Article  CAS  Google Scholar 

  10. S.J. Park, Y.H. Kim, Int. J. Mod. Phys. B 35, 2140001 (2021). https://doi.org/10.1142/S0217979221400014

    Article  CAS  Google Scholar 

  11. Z.P. Li, H.T. Guan, N. Yu, Q. Xu, I. Imae, J.Y. Wei, J. Phys. Chem. C 114, 10119 (2010). https://doi.org/10.1021/jp101342h

    Article  CAS  Google Scholar 

  12. V. Bavastrello, T.B.C. Terencio, C. Nicolini, Polymer. 52, 46 (2011). https://doi.org/10.1016/j.polymer.2010.10.022

    Article  CAS  Google Scholar 

  13. Q. Chen, Q.Y. Peng, X. Zhao, H. Sun, S.S. Wang, Y. Zhu, X.D. He, Carbon. 158, 704 (2020). https://doi.org/10.1016/j.carbon.2019.11.043

    Article  CAS  Google Scholar 

  14. L. Li, X. Liao, X.Y. Sheng, Z.H. Hao, L.L. He, P. Liu, H.B. Quan, RSC Adv. 9, 12864 (2019). https://doi.org/10.1039/c9ra01550g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Kordzadeh, S.A.A. Ramazani, S. Mashayekhan, Comput. Biol. Med. 166, 107393 (2023). https://doi.org/10.1016/j.compbiomed.2023.107393

    Article  CAS  PubMed  Google Scholar 

  16. S.S. Pen, X.W. Kan, New. J. Chem. 43, 10517 (2019). https://doi.org/10.1039/c9nj02276g

    Article  CAS  Google Scholar 

  17. E. Chelmecka, K. Pasterny, T. Kupka, Phys. Status Solidi A 208, 1774 (2016). https://doi.org/10.1002/pssa.201001113

    Article  CAS  Google Scholar 

  18. W.C. Teoh, W.M. Teoh, A.R. Mohamed, Fullerenes, Nanotubes Carbon Nanostruct. 26, 846 (2018). https://doi.org/10.1080/1536383X.2018.1508133

    Article  CAS  Google Scholar 

  19. J.H. Hong, C.K. Hong, S. Choe, S.E. Shim, J. Polym. Sci. Part. A-1: Polym. Chem. 45, 3477 (2007). https://doi.org/10.1002/pola.22122

    Article  CAS  Google Scholar 

  20. S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, Acc. Chem. Res. 35, 1105 (2002). https://doi.org/10.1021/ar010155r

    Article  CAS  PubMed  Google Scholar 

  21. G. Swaminathan, K. Shivakumar, J. Reinf, Plast. Compos. 28, 979 (2009). https://doi.org/10.1177/0731684407087740

    Article  CAS  Google Scholar 

  22. P. Santos, A.P. Silva, P. Reis, Polym. 15, 821 (2023). https://doi.org/10.3390/polym15040821

    Article  CAS  Google Scholar 

  23. Y. Gogotsi, J.A. Libera, M. Yoshimura, Hydrothermal synthesis of multiwall carbon nanotubes. J. Mater. Res. 15(12), 2591–2594 (2000). https://doi.org/10.1557/jmr.2000.0370

    Article  CAS  Google Scholar 

  24. M. Nadolska, M. Przesniak-Welenc, M. Lapinski, K. Sadowska, Mater. 14, 2726 (2021). https://doi.org/10.3390/ma14112726

    Article  CAS  Google Scholar 

  25. S.M. Vinu Kumar, K.L. Senthil Kumar, H. Siddhi Jailani, G. Rajamurugan, Mater. Res. Express. 7, 085302 (2020). https://doi.org/10.1088/2053-1591/abaea5Bhargav

    Article  Google Scholar 

  26. B. Middemeedi, V. Suresh Babu, Mater. Today. Proc. 44, 2617 (2021). https://doi.org/10.1016/j.matpr.2020.12.660

  27. T.Y. Zhu, C.X. Lu, X.X. Lu, J.Y. Zhi, Y.J. Song, Polym. 241, 124535 (2022). https://doi.org/10.1016/j.polymer.2022.124535

    Article  CAS  Google Scholar 

  28. A.M.K. Esawi, H.G. Salem, H.M. Hussein, A.R. Ramadan, Polym. Compos. 31, 772 (2010). https://doi.org/10.1002/pc.20859

    Article  CAS  Google Scholar 

  29. G. Li, X.L. Jia, Z.B. Huang, B. Zhu, P. Li, X.P. Yang, W.G. Dai, Mater. Chem. Phys. 134, 958 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.098

    Article  CAS  Google Scholar 

  30. J.W. Liu, Y.S. Ye, X.L. Xie, X.P. Zhou, Polym. 14. 15 (2022). https://doi.org/10.3390/polym14153137

  31. A.F. Feng, Z.R. Jia, Q. Yu, H.X. Zhang, G. Wu, Nano. 13, 1850037 (2018). https://doi.org/10.1142/S1793292018500376R

    Article  Google Scholar 

  32. M. Baxendale, I.E.E. Proc, Nanobiotechnol. 105, 3 (2003). https://doi.org/10.1049/ip-nbt:20030576

    Article  CAS  Google Scholar 

  33. V. Singh, R. Diaz, K. Balani, A. Agarwal, S. Seal, Acta Mater. 57, 335 (2009). https://doi.org/10.1016/j.actamat.2008.09.023

    Article  CAS  Google Scholar 

  34. W.N. Shen, T.F. Zhang, Y.F. Ge, L.J. Feng, H. Feng, P. Li, Prog Org. Coat. 152, 106130 (2021). https://doi.org/10.1016/j.porgcoat.2020.106130

    Article  CAS  Google Scholar 

  35. M. Banisaeid, Fullerenes, Nanotubes Carbon Nanostruct. 28, 582 (2020). https://doi.org/10.1080/1536383x.2020.1724966

    Article  CAS  Google Scholar 

  36. F. Ernst, Z.H. Gao, R. Arenal, T. Heek, A. Setaro, R. Fernandez-Pacheco, R. Haag, L. Cognet, J. Phys. Chem. C 121, 18887 (2017). https://doi.org/10.1021/acs.jpcc.7b03062

    Article  CAS  Google Scholar 

  37. H. Hosseini, M. Ghaffarzadeh, Inorg. Chem. Commun. 138, 109276 (2022). https://doi.org/10.1016/j.inoche.2022.109276

    Article  CAS  Google Scholar 

  38. M.R. Jiang, H. Zhou, X.H. Cheng, Inorg. Chem. Commun. 54, 10235 (2019). https://doi.org/10.1007/s10853-019-03631-4

    Article  CAS  Google Scholar 

  39. C.M. Niu, K.P. Du, Z. Xu, Z.Q. Li, T.T. Li, R.L. Wang, J. Appl. Polym. Sci. 140, 26 (2023). https://doi.org/10.1002/app.54002

    Article  CAS  Google Scholar 

  40. N. Domun, K. Hadavinia, T. Zhang, T. Sainsbury, G.H. Liaghat, S. Vahid, Nanoscale. 7, 10294 (2015). https://doi.org/10.1039/c5nr01354b

    Article  CAS  PubMed  Google Scholar 

  41. T. Kamae, L.T. Drzal, Polym. Compos. 44, 7855 (2023). https://doi.org/10.1002/pc.27670

    Article  CAS  Google Scholar 

  42. R. Pucciariello, V. Villani, G. Giammarino, J. Polym. Res. 5, 949 (2011). https://doi.org/10.1007/s10965-010-9494-1

    Article  CAS  Google Scholar 

  43. Y.X. He, G.W. Chen, L. Zhang, Y.F. Sang, C. Lu, D.H. Yao, Y.Q. Zhang, High. Perform. Polym. 26, 922 (2014). https://doi.org/10.1177/0954008314534279

    Article  CAS  Google Scholar 

  44. H.S. Kim, H.I. Kwon, S.M. Kwon, Y.S. Yun, J.S. Yoon, J. Nanosci. Nanotechnol. 10, 576 (2010). https://doi.org/10.1166/jnn.2010.2233

    Article  CAS  Google Scholar 

  45. L.C. Li, X.R. Huang, L.J. Zeng, R.F. Li, H.F. Tian, X.W. Fu, Y. Wang, J. Mater. Sci. 54, 1036 (2019). https://doi.org/10.1007/s10853-018-3006-9

    Article  CAS  Google Scholar 

  46. H.L. Chen, L.H. Guo, A.R. Ferhan, D.H. Kim, Phys. Chem. C 115, 5492 (2011). https://doi.org/10.1021/jp111498e

    Article  CAS  Google Scholar 

  47. R.J. Patel, T.B. Tighe, I.N. Ivanov, M.A. Hickner, J. Polym. Sci. Part. B: Polym. Phys. 49, 1269 (2011). https://doi.org/10.1002/polb.22307

    Article  CAS  Google Scholar 

  48. X.M. Zeng, X.F. Xu, P.M. Shenai, E. Kovalev, C. Baudot, N. Mathews, Phys. Chem. C 115, 21685 (2011). https://doi.org/10.1021/jp207388n

    Article  CAS  Google Scholar 

  49. F. Rivadulla, C. Mateo-Mateo, M.A. Correa-Duarte, J. Am. Chem. Soc. 132, 3751 (2010). https://doi.org/10.1021/ja910572b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.51772061).

Funding

Access funding enabled by the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

Xueyue Lv: Investigation, Software, Data curation, Writing – original draft. Shibin Wu: Analyzing data, Writing. Dongyu Zhao: Methodology, Writing – review & editing.

Corresponding author

Correspondence to Dongyu Zhao.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Wu, S. & Zhao, D. Preparation and Performance of MWNTs/ Epoxy Resins Composites. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03122-3

Keywords

Navigation