Skip to main content
Log in

Scalable Synthesis of Layered Bismuth Germanate (Bi12GeO20) for Supercapacitors and Sodium ion Battery Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Bismuth-based semiconductors have attracted significant attention in rechargeable batteries and supercapacitor devices. In this study, layered structured bismuth germanate (Bi12GeO20) was synthesized using hexamine as a surfactant, at 850 °C, and utilized as electro-active material for supercapacitor and sodium ion (NaB) storage applications. The physical characterization of the prepared Bi12GeO20 was studied with various characterization and microscopic analyses such as XRD, FT-IR, FESEM with EDS, HRTEM, and XPS analysis. The XRD analysis exposed the successful formation of a highly crystalline sillenite phase of Bi12GeO20. The surface morphology analysis FE-SEM and HR-TEM revealed the effective construction of the 2D layered structure of Bi12GeO20. The EDS results profound that uniform distribution of the Bi, Ge, and O elements with good elemental stoichiometry. The supercapacitor properties of the prepared Bi12GeO20 were evaluated with the help of three electrode method using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance (EIS) techniques in the aqueous solution of 3.0 M KOH. The prepared Bi12GeO20 architecture shows a higher specific capacitance of 355 F g−1, with a current density of 1 A g−1. Finally, the sodium-ion storage capacity of Bi12GeO20 was evaluated using a coin cell-type electrode. The as-synthesized Bi12GeO20 material was utilized as an anode for Na ion storage and demonstrated a high specific capacity of 740 mAh g−1 at 0.1 C rate. With these appreciable electrochemical performances, the single component Bi12GeO20 holds an ideal alternative electrode material to develop high-performance power and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. X. Fu, T. Li, F. Qi, S. Zhang, J. Wen, W. Shu, P. Luo, R. Zhang, S. Hu, Q. Liu, Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Appl. Surf. Sci. 507, 145135 (2020)

    Article  CAS  Google Scholar 

  2. M. Vinothkannan, B. Son, S. Shanmugam, Porous gC3N4–Gd2Zr2O7 enables the high-temperature operation of Nafion membranes in polymer electrolyte fuel cells over 500 hours. J. Mater. Chem. A 10(16), 8975–8988 (2022)

    Article  CAS  Google Scholar 

  3. X. Fu, Z. Xia, R. Sun, H. An, F. Qi, S. Wang, Q. Liu, G. Sun, A self-charging hybrid electric power device with high specific energy and power. ACS Energy Lett. 3(10), 2425–2432 (2018)

    Article  CAS  Google Scholar 

  4. M. Pathak, C.S. Rout, Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv. Compos. Hybrid. Mater. 5(2), 1404–1422 (2022)

    Article  CAS  Google Scholar 

  5. Q. Mu, R. Liu, H. Kimura, J. Li, H. Jiang, X. Zhang, Z. Yu, X. Sun, H. Algadi, Z. Guo, W. Du, C. Hou, Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv. Compos. Hybrid. Mater. 6(1), 23 (2022)

    Article  Google Scholar 

  6. Y. He et al., Ultrasmall MnO nanoparticles supported on nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. ACS Appl. Mater. Interfaces. 9(44), 38401–38408 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Y. Wang et al., FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chem. Commun. 54(67), 9341–9344 (2018)

    Article  CAS  Google Scholar 

  8. N. Ortiz-Vitoriano et al., High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ. Sci. 10(5), 1051–1074 (2017)

    Article  CAS  Google Scholar 

  9. C. Wang et al., Flexible SnSe2/N-doped porous carbon-fiber film as anode for high-energy-density and stable sodium-ion batteries. J. Power Sources. 555, 232405 (2023)

    Article  CAS  Google Scholar 

  10. K. Zhou, W. Zhou, X. Liu, Y. Sang, S. Ji, W. Li, J. Lu, L. Li, W. Niu, H. Liu, S. Chen, Ultrathin MoO3 nanocrystals self-assembled on graphene nanosheets via oxygen bonding as supercapacitor electrodes of high capacitance and long cycle life. Nano Energy. 12, 510–520 (2015)

    Article  CAS  Google Scholar 

  11. A. Thomas, A. Kumar, G. Perumal, R.K. Sharma, V. Manivasagam, K. Popat, A. Ayyagari, A. Yu, S. Tripathi, E. Buck, B. Gwalani, M. Bhogra, H.S. Arora, Oxygen-vacancy abundant nanoporous Ni/NiMnO3/MnO2@NiMn electrodes with ultrahigh capacitance and energy density for supercapacitors. ACS Appl. Mater. Interfaces. 15, 5086–5098 (2023)

    Article  CAS  PubMed  Google Scholar 

  12. Y. Shen, X. Han, T. Cai, H. Hu, Y. Li, L. Zhao, H. Hu, Q. Xue, Y. Zhao, J. Zhou, X. Gao, W. Xing, X. Wang, High-performance aqueous sodium-ion battery using a hybrid electrolyte with a wide electrochemical stability window. RSC Adv. (2020) 25496–25499

  13. H. Zhao, J. Zhang, T. Yang, Z. Jin, X. He, Z. Wang, Y. Xia, Y. Wang, X. Tao, W. Zhang, Overcrowded additive in electrolyte and crystalline Li2CO3 artificial solid electrolyte interphase on TiNb2O7 anode enable long lifespan aqueous lithium-ion batteries. ACS Appl. Energy Mater. 10, 5464–5472 (2023)

    Article  Google Scholar 

  14. L.M. Suo, O. Borodin, Y.S. Wang, X.H. Rong, W. Sun, X.L. Fan, S.Y. Xu, M.A. Schroeder, A.V. Cresce, F. Wang, C.Y. Yang, Y.S. Hu, K. Xu, C.S. Wang, Water-in-salt electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 21, 461–474 (2017)

    Google Scholar 

  15. G. Deepi, A.S. Srikesh, Nesaraj, Electrochemical performance of Bi2O3 decorated graphene nano composites for supercapacitor applications, Nano-Struct. Nano Object. 15, 10–16 (2018)

    Article  CAS  Google Scholar 

  16. Y. Li, Y. Deng, X. Zhang, G. Ying, Z. Wang, J. Zhang, Facile fabrication of novel Ti3C2Tx-supported fallen leaf-like Bi2S3 nano pieces by a combined local-repulsion and macroscopic attraction strategy with enhanced symmetrical supercapacitor performance. Electrochim. Acta. 366, 137406 (2021)

    Article  CAS  Google Scholar 

  17. H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Flexible asymmetric micro supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. Adv. Energy Mater. 5(6), 1401882 (2015)

    Article  Google Scholar 

  18. S. Korkmaz, I.A. Kariper, O. Karaman, C. Karaman, The production of rGO/RuO2 aerogel supercapacitor and analysis of its electrochemical performances. Ceram. Int. 47(24), 34514–34520 (2021)

    Article  CAS  Google Scholar 

  19. R.K. Mishra, G.J. Choi, H.J. Choi, J. Singh, F.S. Mirsafi, H.-G. Rubahn, Y.K. Mishra, S.H. Lee, J.S. Gwag, Voltage holding and self-discharge phenomenon in ZnO-Co3O4 core-shell heterostructure for binder-free symmetric supercapacitors. Chem. Eng. J. 427, 131895 (2022)

    Article  CAS  Google Scholar 

  20. Z. Tian, K. Zhou, M. Xie, Y. Zhang, J. Chen, C. Du, L. Wan, Self-supported nickel iron selenide @ nickel cobalt boride core-shell nanosheets electrode for asymmetric supercapacitors. Chem. Eng. J. 447 (2022)

  21. B.G. Ghule, N.M. Shinde, Y.T. Nakate, J.H. Jang, R.S. Mane, Bismuth oxide-doped graphene-oxide nanocomposite electrode for energy storage application, colloids Surf. A: Physicochem Eng. Asp. 651, 129690 (2022)

    CAS  Google Scholar 

  22. Y. Chen, J.Z. Fang, S.Y. Lu, C.P. Cen, C. Cheng, L. Ren, W.H. Feng, Z.Q. Fang, Hydrothermal synthesis of a Ba and mg co-doped Bi12GeO20 photocatalyst with enhanced visible light catalytic activity. RSC Adv. 6, 15745–15752 (2016)

    Article  CAS  Google Scholar 

  23. T.M. Oliveira, C. Santos, A.F. Lima, M.V. Lalic, Antisite defect as rule for photorefractive, photochromic and photocatalytic properties of Bi12MO20 (M = Ge, Si, Ti) sillenite crystals. J. Alloy Comp. 720, 187–195 (2017)

    Article  CAS  Google Scholar 

  24. Z. Wan, G.K. Zhang, X.Y. Wu, S. Yin, Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of cr (VI) reduction. Appl. Catal. B-Environ. 207, 17–26 (2017)

    Article  CAS  Google Scholar 

  25. Y. Chen, J. Fang, S. Lu, C. Cen, C. Cheng, L. Ren, W. Feng, Z. Fang, ChemInform abstract: hydrothermal synthesis of a ba and mg co-doped Bi12GeO20 photocatalyst with enhanced visible light catalytic activity. ChemInform. 47, 25–32 (2016)

    Google Scholar 

  26. X. Ruan, H. Hu, H. Che, E. Jiang, X. Zhang, C. Liu, G. Che, A visible-light-driven Zscheme CdS/ Bi12GeO20 heterostructure with enhanced photocatalytic degradation of various organics and the reduction of aqueous cr (VI). J. Colloid Interface Sci. 543, 317–327 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Li, B.A. Huang, X. Zhao, Z.Y. Luo, S.F. Liang, H.Z. Qin, L.Y. Chen, Zeolitic imidazolate framework-L-assisted synthesis of inorganic and organic anionintercalated hetero-trimetallic layered double hydroxide sheets as advanced electrode materials for aqueous asymmetric super-capacitor battery. J. Power Sources. 527, 231149 (2022)

    Article  CAS  Google Scholar 

  28. S. Delice, M. Isik, N.M. Gasanly, N.H. Darvishov, V.E. Bagiev, Structural and temperature-tuned optical characteristics of Bi12GeO20 sillenite crystals. Chin. J. Phys. 66, 422–429 (2020)

    Article  CAS  Google Scholar 

  29. M. Itoh, T. Katagiri, H. Mitani, M. Fujita, Y. Usuki, Comparative study of excitonic structures and luminescence properties of Bi4Ge3O12 and Bi12GeO20, Phys. Status Solidi B 245, 2733–2736 (2008)

    Article  CAS  Google Scholar 

  30. X.W. Ruan, H. Hu, H.N. Che, G.B. Che, C.M. Li, C.B. Liu, H.J. Dong, Facile fabrication of Ag2O/ Bi12GeO20 heterostructure with enhanced visible-light photocatalytic activity for the degradation of various antibiotics. J. Alloy Compd. 773, 1089–1098 (2019)

    Article  CAS  Google Scholar 

  31. B.B. Shao, X.J. Liu, Z.F. Liu, G.M. Zeng, Q.H. Liang, C. Liang, Y. Cheng, W. Zhang, Y. Liu, S.X. Gong, A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation. Chem. Eng. J. 368, 730–745 (2019)

    Article  CAS  Google Scholar 

  32. R. Packiaraj, K.S. Venkatesh, P. Devendran, S. Asath Bahadur, N. Nallamuthu, Structural, morphological and electrochemical studies of nanostructured BiVO4 for supercapacitor application. Mater. Sci. Semiconduct. Process. 115, 105122 (2020)

    Article  CAS  Google Scholar 

  33. R.C. Ambare, P. Shinde, U.T. Nakate, B.J. Lokhande, R.S. Mane, Sprayed Bismuth oxide interconnected nanoplate supercapacitors electrode materials. Appl. Surf. Sci. 453, 214–219 (2018)

    Article  CAS  Google Scholar 

  34. C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, N.M. Huang, Effects of temperature on electrochemical properties of bismuth oxide/manganese oxide pseudocapacitor. Ind. Eng. Chem. Res. 57(6), 2146–2154 (2018)

    Article  CAS  Google Scholar 

  35. J.J. William, I.M. Babu, G. Muralidharan, Nickel bismuth oxide as negative electrode for battery-type asymmetric supercapacitor. Chem. Eng. J. 422, 130058 (2021)

    Article  Google Scholar 

  36. P. Shameem, A. Devendran, V. Murugan, K. Siva, S. Seevakan, D. Hussain, S. Sivaganesh, Asath Bahadur, Rare earth doped bismuth molybdate nanoplatelets for boosting electrochemical performance: facile synthesis and device fabrication. J. Alloys Compd. 968, 171825 (2023)

    Article  CAS  Google Scholar 

  37. A. Sarkar, A.K. Singh, D. Sarkar, G.G. Khan, K. Mandal, Three-dimensional nanoarchitecture of BiFeO3 anchored TiO2 nanotube arrays for electrochemical energy storage and solar energy conversion. ACS Sustain. Chem. Eng. 3, 2254–2263 (2015)

    Article  CAS  Google Scholar 

  38. Q. Pan, C. Yang, Q. Jia, W. Qi, H. Wei, M. Wang, S. Yang, B. Cao, Oxygen-deficient BiFeO3-NC nanoflake anodes for flexible battery-supercapacitor hybrid devices with high voltage and long-term stability. Chem. Eng. J. 397, 125524 (2020)

    Article  CAS  Google Scholar 

  39. M. Girirajan, N.B. Alagarsamy, K. Ramachandran, R.P. Manimuthu, D. Pazhanivel, K.K. Muthusamy, S. Sakkarapani, Two dimensional layered bismuthene nanosheets with ultra-fast charge transfer kinetics as a superior electrode material for high performance asymmetric supercapacitor. Electrochim. Acta. 426, 140838 (2022)

    Article  CAS  Google Scholar 

  40. S. Sarwar, Z. Liu, J. Li, Y. Wang, R. Wang, X. Zhang, High performance hybridcapacitor based on MoTe2/graphene through ultra-fast, facile microwave-initiated synthesis. J. Alloy Compd. 846, 155886 (2020)

    Article  CAS  Google Scholar 

  41. P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X.H. Bu, Y. Xu, Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High-Rate Sodium-Ion batteries. Adv. Mater. 31, 1904771 (2019)

    Article  CAS  Google Scholar 

  42. K. Li, J. Zhang, D. Lin, D.W. Wang, B. Li, W. Lv, S. Sun, Y.B. He, F. Kang, Q.H. Yang, L. Zhou, T.Y. Zhang, Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 10, 1–10 (2019)

    Google Scholar 

  43. T. Liu, B. Wang, X. Gu, L. Wang, M. Ling, G. Liu, D. Wang, S. Zhang, Allclimate sodium ion batteries based on the NASICON electrode materials. Nano Energy. 30, 756–761 (2016)

    Article  CAS  Google Scholar 

  44. J. Song, M. Wu, K. Fang, T. Tian, R. Wang, H. Tang, NaF-rich interphase and high initial coulombic efficiency of red phosphorus anode for sodium-ion batteries by chemical presodiation. J. Colloid Interface Sci. 630, 443–452 (2023)

    Article  CAS  PubMed  Google Scholar 

  45. C. Wang, L. Wang, F. Li, F. Cheng, J. Chen, Bulk Bismuth as a high-capacity and Ultralong cycle-life Anode for Sodium-Ion batteries by coupling with glyme-based Electrolytes. Adv. Mater. 29, 1702212 (2017)

    Article  Google Scholar 

  46. J. Li, Z. Li, S. Tang, T. Wang, K. Wang, L. Pan, C. Wang, Sodium titanium phosphate nanocube decorated on tablet-like carbon for robust sodium storage performance at low temperature. J. Colloid Interface Sci. 629, 121–132 (2023)

    Article  CAS  PubMed  Google Scholar 

  47. Z. Li, Y. Zhang, J. Zhang, Y. Cao, J. Chen, H. Liu, Y. Wang, Sodium-ion battery with a wide operation-temperature range from – 70 to 100°C. Angew Chem. Int. Edit. 61, e202116930 (2022)

    Article  CAS  Google Scholar 

  48. Y. Yu, H. Zhang, F. Yang, Y. Zeng, X. Liu, X. Lu, Bismuth nanoparticles@carbon composite as a stable and high-capacity anode for high-voltage bismuth-manganese batteries. Energy Storage Mater. 41, 623–630 (2021)

    Article  Google Scholar 

  49. J.Y. Hwang, S.T. Myung, Y.K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46, 3529–3614 (2017)

    Article  CAS  PubMed  Google Scholar 

  50. Y. Tian, G. Zeng, A. Rutt, T. Shi, H. Kim, J. Wang, J. Koettgen, Y. Sun, B. Ouyang, T. Chen, Z. Lun, Z. Rong, K. Persson, G. Ceder, Promises and challenges of NextGeneration Beyond Li-ion Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 121, 1623–1669 (2021)

    Article  CAS  PubMed  Google Scholar 

  51. L. Cao, X.H. Liang, X. Ou, X.F. Yang, Y.Z. Li, C.H. Yang, Z. Lin, M.L. Liu, Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance. Adv. Funct. Mater. 30, 1910732 (2020)

    Article  CAS  Google Scholar 

  52. A.N. Wang, W.W. Hong, L. Yang, Y. Tian, X.J. Qiu, G.Q. Zou, H.S. Hou, X.B. Ji, Bi based electrode materials for alkali metal-ion batteries. Small. 16, 2004022 (2020)

    Article  CAS  Google Scholar 

  53. J.F. Ni, X.X. Bi, Y. Jiang, L. Li, J. Lu, Bismuth chalcogenide compounds Bi2X3 (X = O, S, Se): applications in electrochemical energy storage. Nano Energy. 34, 356–366 (2017)

    Article  CAS  Google Scholar 

  54. A. Shameem, P. Devendran, V. Siva, A. Murugan, S. Sasikumar, N. Nallamuthu, S. Hussain, Asath Bahadur, robust one-step synthesis of bismuth molybdate nanocomposites: a promising negative electrode for high end ultracapacitors. Solid State Sci. 106, 106303 (2020)

    Article  CAS  Google Scholar 

  55. Y.M. Lin, X.D. Guo, M.J. Hu, B. Liu, Y.C. Dong, X. Wang, N. Li, H.-E. Wang, A MoS2@SnS heterostructure for sodium-ion storage with enhanced kinetics. Nanoscale. 12, 14689–14698 (2020)

    Article  CAS  PubMed  Google Scholar 

  56. J. Wang, B. Zhao, X. Huang, Y. Wang, X. Du, L. Wei, Y. Zhang, W. Ma, Corn stalk-based Carbon microsphere/reduced graphene oxide composite hydrogels for high-performance symmetric supercapacitors. Energy Fuel. 36, 2268–2276 (2022)

    Article  CAS  Google Scholar 

  57. C. Zhao, Z. Ge, Y. Zhou, Y. Huang, G. Wang, X. Qian, Solar-assisting pyrolytically reclaimed carbon fiber and their hybrids of MnO2/RCF for supercapacitor electrodes. Carbon. 114, 230–241 (2017)

    Article  CAS  Google Scholar 

  58. Y. Sayed, A.G. Attia, F. Bedir, Yosry, S.G. Barakat, Mohamed, A two-dimensional nickel-doped bismuth-layered double hydroxide structure as a bifunctional efficient electrode material for symmetric supercapacitors. Sustainable Mater. Technol., 36, 2023, e00595

  59. F.L. Zheng, G.-R. Li, Y.-N. Ou, Z.-L. Wang, C.-Y. Su, Y.-X. Tong, Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications. Chem. Commun. 46, 5021 (2010)

    Article  CAS  Google Scholar 

  60. J. Ma, S. Zhu, Q. Shan, S. Liu, Y. Zhang, F. Dong et al., Facile synthesis of flowerlike (BiO)2CO3@MnO2and Bi2O3@MnO2 nanocomposites for supercapacitors. Electrochim. Acta. 168, 97–103 (2015)

    Article  CAS  Google Scholar 

  61. J. Bhagwan, B. Ramulu, J.S. Yu, High-performance quasi-solid-state asymmetric supercapacitors based on BiMn2O5 nanoparticles and redox-additive electrolytes. Inorg. Chem. Front. 6, 2061–2070 (2019)

    Article  CAS  Google Scholar 

  62. L. Qie, W. Chen, X. Xiong, Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries [J]. Adv. Sci. 2(12), 1500195 (2015)

    Article  Google Scholar 

  63. H. Qi, L. Wang, T. Zuo, S. Deng, Q. Li, Z.H. Liu, P. Hu, X. He, Hollow structure VS2@ reduced graphene oxide (RGO) architecture for enhanced sodium-ion battery performance. Chemelectrochem. 7, 78–85 (2020)

    Article  CAS  Google Scholar 

  64. P.H. Song, J. Yang, J.C.Y. Wang, T.Y. Wang, H. Gao, G.X. Wang, J.B. Li, Interface engineering of Fe7S8/FeS2heterostructure in situ encapsulated into nitrogen doped carbon nanotubes for high power sodium-ion batteries. Nano-Micro Lett. 15, 118 (2023 15)

  65. Y. Wang, W. Kang, X. Pu, Y. Liang, B. Xu, Template directed synthesis of Co2P/MoSe2 in a N-doped carbon hollow structure for efficient and stable sodium/potassium ion storage. Nano Energy. 93(1), 106897 (2022)

    Article  CAS  Google Scholar 

  66. S. Kaushik, J. Hwang, K. Matsumoto, Y. Sato, R. Hagiwara, High-rate capability and cyclability of CuP2/C composite negative electrode for sodium secondary battery operating at room to intermediate temperatures using ionic liquid. Chem. Electro Chem. 5, 1340–1344 (2018)

    CAS  Google Scholar 

  67. Z. Huang, H. Hou, C. Wang, S. Li, Y. Zhang, X. Ji, Molybdenum phosphide: a conversion-type Anode for ultralong-life sodium-ion batteries. Chem. Mater. 29, 7313–7322 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by SRMIST (Selective Excellence Research Initiative - 2023) Grant number: SRMIST/R/AR(A)/SERI2023/174/26-3944. The authors further acknowledge the SRM-Central Instrumentation Facility (SCIF), SRM Nanotechnology Research Centre (NRC) for providing instrumentation facilities.

Author information

Authors and Affiliations

Authors

Contributions

Sethumathavan Vadivel: Writing Original Draft/Review and Methodology V. Divya Dharshini: Na-Ion battery Experiment Kasiviswanathan Kavibharathy: Conceptualization Kumaran Vediappan: Review the draft Bappi Paul: Supervison B. Saravanakumar: Supercapacitor Experiment P. A. Periasamy: Funding Sujitha Prabhakar: Proof Reading and Scheme.

Corresponding author

Correspondence to Sethumathavan Vadivel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadivel, S., Divya Dharshini, V., Kavibharathy, K. et al. Scalable Synthesis of Layered Bismuth Germanate (Bi12GeO20) for Supercapacitors and Sodium ion Battery Applications. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03098-0

Keywords

Navigation