Skip to main content
Log in

Rapid and Facile Electrochemical Synthesis of MIL-101(Fe)-NH2 and Its Curcumin Loading and Release Studies

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) receive great attention for their wide spectrum of applications ranging from catalysis to biomedical applications. Despite the progressively growing scope of their functionalization and application, the synthesis method to achieve the material in such a short time and high yield is still a challenge. In this study, we performed the electrochemical preparation of MIL-101(Fe)-NH2 for the first time. The obtained material exhibited similar physico-chemical properties compared to those prepared with a solvothermal method. Analysis using X-ray diffraction (XRD) showed that the electrochemically-synthesized MIL-101(Fe)-NH2 demonstrates high suitability with the standard pattern at 2θ 9.28, 10.3, and 16.72°. Further analysis using Fourier Transform Infrared Spectroscopy (FTIR) confirmed that the proposed method had successfully produced the desired materials, as observed from the shift of C = O bond absorption band from 1688 cm− 1 to lower wavenumber and the presence of C-N bond at 1336 cm− 1 as well as the asymmetrical and symmetrical stretching vibration of N-H at 3470 and 3368 cm− 1. Nitrogen sorption isotherm confirmed the material occupies micro-porosity with an average pore size of 2.6 nm. The Field Emission Scanning Electron Microscopy-Energy Dispersive Spectroscopy (FESEM-EDS) and Transmission electron Microscopy (TEM) analysis revealed that the material occupies a micro-spindle shape. Moreover, Thermogravimetric analysis (TGA) showed that the material is thermally stable up to 250 ℃. Loading of curcumin into MIL-101(Fe)-NH2 via a post-synthesis strategy showed that solvothermal-synthesized MIL-101(Fe)-NH2 (MIL-101(Fe)-NH2-S) exhibited the highest loading efficiency up to 91.7% in 48 h. The release study revealed that the slowest release of the drug was observed in MIL-101(Fe)-NH2-S in an acidic medium (pH 4.8) and the release kinetic followed the non-Fickian diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. O.M. Yaghi, M.J. Kalmutzi, C.S. Diercks, Introduction to Reticular Chemistry (Wiley-VCH Verlag GmbH & Co., Weinheim, 2019)

    Book  Google Scholar 

  2. S.M. Moosavi et al., Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068–4078 (2020). https://doi.org/10.1038/s41467-020-17755-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. B. Maranescu, A. Visa, Applications of Metal-Organic frameworks as Drug Delivery systems. Int. J. Mol. Sci. 23 (2022). 8. MDPI, Apr. 01. https://doi.org/10.3390/ijms23084458

  4. A. Mittal, I. Roy, S. Gandhi, Drug delivery applications of Metal-Organic frameworks (MOFs), in p. Ch. 4, ed. by L.J. Drug Carriers, Villarreal-Gómez (IntechOpen, Rijeka, 2022). https://doi.org/10.5772/intechopen.103684

    Chapter  Google Scholar 

  5. L. Han et al., Hierarchically porous zirconium-based metal–organic frameworks for rapid adsorption and enrichment of sulfonamide antibiotics. Chem. Eng. J. 456(140969) (Jan. 2023). https://doi.org/10.1016/j.cej.2022.140969

  6. A. Pangestu, W.W. Lestari, F.R. Wibowo, L. Larasati, Green Electro-synthesized MIL-101(fe) and its aspirin detoxification performance compared to MOF-808. J. Inorg. Organomet. Polym. Mater. 32(5), 1828–1839 (2022). https://doi.org/10.1007/s10904-022-02235-x

    Article  CAS  Google Scholar 

  7. P. Qin, S. Zhu, M. Mu, Y. Gao, Z. Cai, M. Lu, Constructing cactus-like mixed dimensional MOF@MOF as sorbent for extraction of bisphenols from environmental water. Chin. Chem. Lett. 34(108620) (Dec. 2023). https://doi.org/10.1016/j.cclet.2023.108620

  8. Y. Gao, S. Zhu, M. Mu, D. Li, M. Lu, Design of magnetic multivariate metal–organic framework for high-efficient adsorption and rapid magnetic separation of bisphenol pollutants. Chem. Eng. J. 475(146459) (Nov. 2023). https://doi.org/10.1016/j.cej.2023.146459

  9. H.S. Wang, Y.H. Wang, Y. Ding, Development of biological metal-organic frameworks designed for biomedical applications: From bio-sensing/bio-imaging to disease treatment, Nanoscale Advances, vol. 2, no. 9. Royal Society of Chemistry, pp. 3788–3797, Sep. 01, 2020. https://doi.org/10.1039/d0na00557f

  10. Y. Liu, T. Jiang, Z. Liu, Metal-Organic Frameworks for Bioimaging: Strategies and Challenges, Nanotheranostics, vol. 6, 2no. edn. (Ivyspring International, 2022), pp. 143–160. https://doi.org/10.7150/ntno.63458

  11. S.C. Gupta, S. Patchva, W. Koh, B.B. Aggarwal, Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol. 39(3), 283–299 (Mar. 2012). https://doi.org/10.1111/j.1440-1681.2011.05648.x

  12. Z.J. Yang et al., Effects and mechanisms of Curcumin for the Prevention and Management of cancers: an updated review. Antioxidants. 11 (2022). 8. MDPI, Aug. 01. https://doi.org/10.3390/antiox11081481

  13. B. Kocaadam, N. Şanlier, Curcumin, an active component of turmeric (Curcuma longa), and its effects on health, Crit Rev Food Sci Nutr, vol. 57, no. 13, pp. 2889–2895, Sep. 2017, https://doi.org/10.1080/10408398.2015.1077195

  14. S. Mukherjee, S. Sharma, S.K. Ghosh, Hydrophobic metal-organic frameworks: potential toward emerging applications. APL Mater. 7(5), 050701 (May 2019). https://doi.org/10.1063/1.5091783

  15. S. Li, Y. Wei, Y. Wang, H. Liang, Advances in hydrophilic metal–organic frameworks for N-linked glycopeptide enrichment. Front. Chem. 10 (Dec. 2022). https://doi.org/10.3389/fchem.2022.1091243

  16. X. Chen et al., Catalyst surfaces with tunable hydrophilicity and hydrophobicity: metal-organic frameworks toward controllable catalytic selectivity. Chem. Commun. 54, 3936–3939 (2018). https://doi.org/10.1039/c8cc00318a

    Article  CAS  Google Scholar 

  17. H. Su, F. Sun, J. Jia, H. He, A. Wang, G. Zhu, A highly porous medical metal-organic framework constructed from bioactive curcumin, Chemical Communications, vol. 51, no. 26, pp. 5774–5777, Apr. 2015, https://doi.org/10.1039/c4cc10159f

  18. A. Tiwari, A. Singh, N. Garg, J.K. Randhawa, Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Sci. Rep. 7(1) (Dec. 2017). https://doi.org/10.1038/s41598-017-12786-6

  19. S. Lawson, K. Newport, N. Pederniera, A.A. Rownaghi, F. Rezaei, Curcumin Delivery on Metal-Organic Frameworks: The Effect of the Metal Center on Pharmacokinetics within the M-MOF-74 Family, ACS Appl Bio Mater, vol. 4, no. 4, pp. 3423–3432, Apr. 2021, https://doi.org/10.1021/acsabm.1c00009

  20. M. Cai et al., An investigation of IRMOF-16 as a pH-responsive drug delivery carrier of curcumin. J. Science: Adv. Mater. Devices. 7(4) (Dec. 2022). https://doi.org/10.1016/j.jsamd.2022.100507

  21. N. Faaizatunnisa, W.W. Lestari, O.A. Saputra, T.E. Saraswati, L. Larasati, F.R. Wibowo, Slow-release of Curcumin Induced by Core–Shell Mesoporous silica nanoparticles (MSNs) modified MIL-100(Fe) Composite. J. Inorg. Organomet. Polym. Mater. 32(5), 1744–1754 (May 2022). https://doi.org/10.1007/s10904-022-02230-2

  22. A. Amalia, W.W. Lestari, J.H. Pratama, F.R. Wibowo, L. Larasati, T.E. Saraswati, Modification of dry-gel synthesized MIL-100(Fe) with carboxymethyl cellulose for curcumin slow-release, Journal of Polymer Research, vol. 29, no. 11, Nov. 2022, https://doi.org/10.1007/s10965-022-03319-5

  23. V.K. Munasinghe, D. Manawadu, R.M. de Silva, K.M.N. de Silva, Impact of active sites on encapsulation of curcumin in Metal Organic frameworks. Mater. Res. Express. 10(3) (Mar. 2023). https://doi.org/10.1088/2053-1591/acc445

  24. Y. Wang et al., November., Biomaterials Metal-organic frameworks for stimuli-responsive drug delivery, Biomaterials, vol. 230, no. 2019, p. 119619, 2020, https://doi.org/10.1016/j.biomaterials.2019.119619

  25. S. Bauer et al., Sep., High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system, Inorg Chem, vol. 47, no. 17, pp. 7568–7576, 2008, https://doi.org/10.1021/ic800538r

  26. Y. Dong et al., Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(fe) and NH2-MIL-101(fe) for enhanced tetracycline adsorption. Mater. Chem. Phys. 251 (Sep. 2020). https://doi.org/10.1016/j.matchemphys.2020.123060

  27. S. Dai, A. Tissot, C. Serre, Metal-Organic Frameworks: From Ambient Green Synthesis to Applications, Bulletin of the Chemical Society of Japan, vol. 94, no. 11. Chemical Society of Japan, pp. 2623–2636, 2021. https://doi.org/10.1246/bcsj.20210276

  28. P. Huang et al., Room-temperature preparation of highly efficient NH2-MIL-101(fe) catalyst: the important role of –NH2 in accelerating Fe(III)/Fe(II) cycling. Chemosphere. 291 (Mar. 2022). https://doi.org/10.1016/j.chemosphere.2021.133026

  29. H. Al-Kutubi, J. Gascon, E.J.R. Sudhölter, L. Rassaei, Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities, ChemElectroChem, vol. 2, no. 4, pp. 462–474, Apr. 2015, https://doi.org/10.1002/celc.201402429

  30. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal-Organic frameworks-prospective Industrial Applications. J. Mater. Chem. 16(7), 626–636 (2006)

    Article  CAS  Google Scholar 

  31. U. Mueller et al., Method for Electrochemical production of a Crystalline Porous Metal-Organic Skeleton Material, US7968739B2, 2011

  32. G.T.M. Kadja et al., Advanced Ordered Nanoporous Materials, in Advanced Functional Porous Materials: from Macro to Nano Scale Lengths, ed. by A. Uthaman, S. Thomas, T. Li, H. Maria (Springer International Publishing, Cham, 2022), pp. 259–317. https://doi.org/10.1007/978-3-030-85397-6_9

    Chapter  Google Scholar 

  33. R. Senthil Kumar, S. Senthil Kumar, M. Anbu Kulandainathan, Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Microporous Mesoporous Mater. 168, 57–64 (2013). https://doi.org/10.1016/j.micromeso.2012.09.028

    Article  CAS  Google Scholar 

  34. W.W. Lestari, M. Adreane, H. Suwarno, Enhanced Hydrogen Storage Capacity over Electro-synthesized HKUST-1. J. Math. Fundamental Sci. 49(3), 213–224 (Dec. 2017). https://doi.org/10.5614/j.math.fund.sci.2017.49.3.1

  35. H.M. Yang, X.L. Song, T.L. Yang, Z.H. Liang, C.M. Fan, X.G. Hao, Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv. 4(30), 15720–15726 (2014). https://doi.org/10.1039/C3RA47744D

    Article  CAS  Google Scholar 

  36. W.W. Lestari, J. Hartono, M. Adreane, K.D. Nugrahaningtyas, C. Purnawan, S.B. Rahardjo, Electro-Synthetic optimization of host material based on MIL-100(fe). Molekul. 11(1), 61–70 (May 2016). https://doi.org/10.20884/1.jm.2016.11.1.195

  37. W.W. Lestari, I.D. Winarni, F. Rahmawati, Electrosynthesis of Metal-Organic frameworks (MOFs)based on Nickel(II) and Benzene 1,3,5-Tri Carboxylic Acid (H 3 BTC): an optimization reaction Condition. IOP Conf. Ser. Mater. Sci. Eng. 172, 012064 (Feb. 2017). https://doi.org/10.1088/1757-899X/172/1/012064

  38. W. Wu, G.E. Decker, A.E. Weaver, A.I. Arnoff, E.D. Bloch, J. Rosenthal, Facile and Rapid Room-Temperature Electrosynthesis and Controlled Surface Growth of Fe-MIL-101 and Fe-MIL-101-NH2, ACS Cent Sci, vol. 7, no. 8, pp. 1427–1433, Aug. 2021, https://doi.org/10.1021/acscentsci.1c00686

  39. R. Karimi Alavijeh, K. Akhbari, Biocompatible MIL-101(Fe) as a Smart Carrier with High Loading Potential and Sustained Release of Curcumin, Inorg Chem, vol. 59, no. 6, pp. 3570–3578, Mar. 2020, https://doi.org/10.1021/acs.inorgchem.9b02756

  40. O.A. Saputra, W.N. Safitriono, D.E.K. Maharani, A. Febiana, F.R. Wibowo, pH-controlled release feature of chitosan assembled silica nanoparticles containing nano-formulated curcumin over in vitro gastric and physiological condition, Food Biosci, vol. 53, Jun. 2023, https://doi.org/10.1016/j.fbio.2023.102793

  41. Z. Zhang, X. Li, B. Liu, Q. Zhao, G. Chen, Hexagonal microspindle of NH 2 -MIL-101(fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Adv. 6(6), 4289–4295 (2016). https://doi.org/10.1039/C5RA23154J

    Article  CAS  Google Scholar 

  42. T. Boontongto, R. Burakham, Evaluation of metal-organic framework NH2-MIL-101(fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples. Heliyon. 5(11), e02848 (Nov. 2019). https://doi.org/10.1016/j.heliyon.2019.e02848

  43. Y. Han, H. Yang, X. Guo, Synthesis Methods and Crystallization of MOFs, in Synthesis Methods and Crystallization, R. Marzouki, Ed., Rijeka: IntechOpen, 2020, p. Ch. 5. https://doi.org/10.5772/intechopen.90435

  44. K.A.S. Usman et al., Downsizing metal–organic frameworks by bottom-up and top-down methods, NPG Asia Materials, vol. 12, no. 1. Nature Research, Dec. 01, 2020. https://doi.org/10.1038/s41427-020-00240-5

  45. G. Nageswaran, Review—Direct Electrochemical synthesis of Metal Organic frameworks. J. Electrochem. Soc. 167, 155527 (Dec. 2020). https://doi.org/10.1149/1945-7111/abc6c6

  46. M. Hartmann, S. Kunz, D. Himsl, O. Tangermann, S. Ernst, A. Wagener, Adsorptive Separation of Isobutene and Isobutane on Cu 3 (BTC) 2, Langmuir, vol. 24, no. 16, pp. 8634–8642, Aug. 2008, https://doi.org/10.1021/la8008656

  47. R. Karimi Alavijeh, K. Akhbari, Biocompatible MIL-101(fe) as a smart carrier with high loading potential and sustained release of Curcumin. Inorg. Chem. 59(6), 3570–3578 (2020). https://doi.org/10.1021/acs.inorgchem.9b02756

    Article  CAS  PubMed  Google Scholar 

  48. H. Molavi, M. Zamani, M. Aghajanzadeh, H. Kheiri Manjili, H. Danafar, A. Shojaei, Evaluation of UiO-66 metal organic framework as an effective sorbent for Curcumin’s overdose. Appl. Organomet. Chem. 32(4) (Apr. 2018). https://doi.org/10.1002/aoc.4221

  49. S. Hatamie et al., Complexes of cobalt nanoparticles and polyfunctional curcumin as antimicrobial agents. Mater. Sci. Eng., C 32(2), 92–97 (Feb. 2012). https://doi.org/10.1016/j.msec.2011.10.002

  50. X. Zhao, M. Zheng, G. Xinli, Z. Gao, H. Huang, Construction of an anionic porous framework via a post-synthesis strategy to regulate the adsorption behavior of organic pollutants. J. Mater. Sci. 55 (Oct. 2020). https://doi.org/10.1007/s10853-020-05043-1

  51. M.M. Mailafiya et al., Evaluation of in vitro release kinetics and mechanisms of curcumin-loaded cockle shell-derived calcium carbonate nanoparticles. Biomedical Res. Therapy. 6(12), 3518–3540 (2019). https://doi.org/10.15419/bmrat.v6i12.580

    Article  Google Scholar 

  52. D. Render et al., Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery, J Nanomater, vol. 2016, 2016, https://doi.org/10.1155/2016/3170248

  53. M. Almáši, V. Zeleňák, P. Palotai, E. Beňová, A. Zeleňáková, Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system. Inorg. Chem. Commun. 93, 115–120 (Jul. 2018). https://doi.org/10.1016/j.inoche.2018.05.007

  54. P.L. Ritger, N.A. Peppas, A SIMPLE EQUATION FOR, DESCRIPTION OF SOLUTE RELEASE II. FICKIAN AND ANOMALOUS RELEASE FROM SWELLABLE DEVICES, J. Controlled Release. 5, 37 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Universitas Sebelas Maret for providing the funding for this study via the scheme International Research Collaboration 2023-2024, project number 228/UN27.22/PT.01.03/2023 and 194.2/UN27.22/PT.01.03/2024.

Funding

This study was funded by Universitas Sebelas Maret in the scheme of International Research Collaboration 2023-2024, project number 228/UN27.22/PT.01.03/2023 and 194.2/UN27.22/PT.01.03/2024.

Author information

Authors and Affiliations

Authors

Contributions

W.W. L : Conceptualization, L.L, D. D.: Methodology, L. L, D. D: Formal analysis and investigation, L. L, D. D : Writing - original draft preparation, W. W. L, R.S. R. S, M. F., A. M, F. R. W. : review and editing, W. W. L : Funding acquisition, W. W. L: Resources, W. W. L, R. S. R. S., M. F., A. M., A. M., F. R. W : Supervision.

Corresponding author

Correspondence to Witri Wahyu Lestari.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larasati, L., Dendy, D., Lestari, W.W. et al. Rapid and Facile Electrochemical Synthesis of MIL-101(Fe)-NH2 and Its Curcumin Loading and Release Studies. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03049-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03049-9

Keywords

Navigation