Skip to main content
Log in

Facile Approach for Preparing Printed Cotton Fabric with Antimicrobial Activity by Utilizing the Functional Characteristics of Nano-Silver

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The principal goal of this research revolves around imparting antimicrobial activities on printed cotton fabric utilizing silver nanoparticles. Two colorants, dyes, and pigments are used for printing of 100% scoured and bleached cotton, fabric, and both fabrics are assessed to get antimicrobial activity of printed cloth. Screen-printing techniques are used here to apply the pigment and reactive dye onto the fabric. The outcomes of the study reflect that the addition of silver nanoparticles to the reactive dye-printed and pigment-printed fabric significantly decreases bacterial growth up to 99.99%. In addition, Silver nanoparticles increase color intensity by around 25% in pigment printing, however, reduce it in reactive printing. Both methods enhance color fastness by increasing resistance to fading, staining, and rubbing. The scanning electron microscopy (SEM) analysis reveals that the print paste and sodium alginate have an impact on the distribution of nanoparticles. Through X-ray diffraction (XRD), it has been determined that the sample maintains a crystalline form and an average size of 29.185 nm of silver nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) analysis indicates no notable molecular-level alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

SEM:

Scanning electron microscopy

XRD:

X-Ray dispersive spectroscopy

FTIR:

Fourier transform infrared spectroscopy

R%:

Reduction percentage of bacteria

K/S:

Color strength

Color measurement parameters:

Lightness (L*) from black (0) to white (100), a* is a red (+)/green (−) ratio, b* is yellow (+)/blue

References

  1. P. S.-Y. Tang, The effects of design parameters on nanoparticle cellular uptake, nuclear transport and accumulation, MAS thesis, University of Toronto, 2014

  2. M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  3. P.J. Rivero, A. Urrutia, J. Goicoechea, F.J. Arregui, Nanomaterials for functional textiles and fibers. Nanoscale Res. Lett. 10(1), 501 (2015). https://doi.org/10.1186/s11671-015-1195-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. Pradhan, A. Pal, T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf. Physicochem. Eng. Asp. 196(2–3), 247–257 (2002). https://doi.org/10.1016/S0927-7757(01)01040-8

    Article  CAS  Google Scholar 

  5. M. Rai et al., Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnol. Rev. 3(3) (2014). https://doi.org/10.1515/ntrev-2014-0001

  6. M.E. El-Naggar, Th.I. Shaheen, S. Zaghloul, M.H. El-Rafie, A. Hebeish, Antibacterial activities and UV protection of the in situ synthesized titanium oxide nanoparticles on cotton fabrics. Ind. Eng. Chem. Res. 55(10), 2661–2668 (2016). https://doi.org/10.1021/acs.iecr.5b04315

    Article  CAS  Google Scholar 

  7. Th.I. Shaheen, M.E. El-Naggar, A.M. Abdelgawad, A. Hebeish, Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. Int. J. Biol. Macromol. 83, 426–432 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  8. A.M. Abdelgawad, M.E. El-Naggar, S.M. Hudson, O.J. Rojas, Fabrication and characterization of bactericidal thiol-chitosan and chitosan iodoacetamide nanofibres. Int. J. Biol. Macromol. 94, 96–105 (2017). https://doi.org/10.1016/j.ijbiomac.2016.07.061

    Article  CAS  PubMed  Google Scholar 

  9. A.L. Mohamed, M.E. El-Naggar, Th.I. Shaheen, A.G. Hassabo, Laminating of chemically modified silan based nanosols for advanced functionalization of cotton textiles. Int. J. Biol. Macromol. 95, 429–437 (2017). https://doi.org/10.1016/j.ijbiomac.2016.10.082

    Article  CAS  PubMed  Google Scholar 

  10. M.E. El-Naggar, A.G. Hassabo, A.L. Mohamed, T.I. Shaheen, Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. J. Colloid Interface Sci. 498, 413–422 (2017). https://doi.org/10.1016/j.jcis.2017.03.080

    Article  CAS  PubMed  Google Scholar 

  11. A.L. Mohamed, M.E. El-Naggar, T.I. Shaheen, A.G. Hassabo, Novel nano polymeric system containing biosynthesized core shell silver/silica nanoparticles for functionalization of cellulosic based material. Microsyst. Technol. 22(5), 979–992 (2016). https://doi.org/10.1007/s00542-015-2776-0

    Article  CAS  Google Scholar 

  12. M. Dochia, C. Sirghie, R.M. Kozłowski, Z. Roskwitalski, Cotton fibres, in Handbook of Natural Fibres. (Elsevier, 2012), pp.11–23. https://doi.org/10.1533/9780857095503.1.9

    Chapter  Google Scholar 

  13. Z. Fei, B. Liu, M. Zhu, W. Wang, D. Yu, Antibacterial finishing of cotton fabrics based on thiol-maleimide click chemistry. Cellulose 25(5), 3179–3188 (2018). https://doi.org/10.1007/s10570-018-1771-x

    Article  CAS  Google Scholar 

  14. M. Rauytanapanit, A. Opitakorn, M. Terashima, R. Waditee-Sirisattha, T. Praneenararat, Antibacterial cotton fabrics based on hydrophilic amino-containing scaffolds. Colloids Surf. B Biointerfaces 164, 42–49 (2018). https://doi.org/10.1016/j.colsurfb.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  15. M. Salat, P. Petkova, J. Hoyo, I. Perelshtein, A. Gedanken, T. Tzanov, Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr. Polym. 189, 198–203 (2018). https://doi.org/10.1016/j.carbpol.2018.02.033

    Article  CAS  PubMed  Google Scholar 

  16. G. Ren et al., A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property. J. Colloid Interface Sci. 522, 57–62 (2018). https://doi.org/10.1016/j.jcis.2018.03.038

    Article  CAS  PubMed  Google Scholar 

  17. G. Xi, W. Fan, L. Wang, X. Liu, T. Endo, Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl methacrylate. J. Polym. Sci. Part Polym. Chem. 53(16), 1862–1871 (2015). https://doi.org/10.1002/pola.27632

    Article  CAS  Google Scholar 

  18. G. Xi et al., Healable superhydrophobicity of novel cotton fabrics modified via one-pot mist copolymerization. Cellulose 23(1), 915–927 (2016). https://doi.org/10.1007/s10570-015-0773-1

    Article  CAS  Google Scholar 

  19. L. Wang, G.H. Xi, S.J. Wan, C.H. Zhao, X.D. Liu, Asymmetrically superhydrophobic cotton fabrics fabricated by mist polymerization of lauryl methacrylate. Cellulose 21(4), 2983–2994 (2014). https://doi.org/10.1007/s10570-014-0275-6

    Article  CAS  Google Scholar 

  20. Y. Gao, R. Cranston, Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78(1), 60–72 (2008). https://doi.org/10.1177/0040517507082332

    Article  CAS  Google Scholar 

  21. O.A.M. Al-Bar, R.M. El-Shishtawy, S.A. Mohamed, Immobilization of camel liver catalase on nanosilver-coated cotton fabric. Catalysts 11(8), 900 (2021). https://doi.org/10.3390/catal11080900

    Article  CAS  Google Scholar 

  22. J.W. Betts, M. Hornsey, R.M. La Ragione, Novel antibacterials: alternatives to traditional antibiotics, in Advances in Microbial Physiology, vol. 73, (Elsevier, 2018), pp.123–169. https://doi.org/10.1016/bs.ampbs.2018.06.001

    Chapter  Google Scholar 

  23. M. Natan, E. Banin, From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 41(3), 302–322 (2017). https://doi.org/10.1093/femsre/fux003

    Article  CAS  PubMed  Google Scholar 

  24. G. Gahlawat, S. Shikha, B.S. Chaddha, S.R. Chaudhuri, S. Mayilraj, A.R. Choudhury, Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera. Microb. Cell Factories 15(1), 25 (2016). https://doi.org/10.1186/s12934-016-0422-x

    Article  CAS  Google Scholar 

  25. C.-N. Lok et al., Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006). https://doi.org/10.1021/pr0504079

    Article  CAS  PubMed  Google Scholar 

  26. C. Barros, S. Fulaz, D. Stanisic, L. Tasic, Biogenic nanosilver against multidrug-resistant bacteria (MDRB). Antibiotics 7(3), 69 (2018). https://doi.org/10.3390/antibiotics7030069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275(1), 177–182 (2004). https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  28. R. Kumar, H. Münstedt, Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 26(14), 2081–2088 (2005). https://doi.org/10.1016/j.biomaterials.2004.05.030

    Article  CAS  PubMed  Google Scholar 

  29. B. Le Ouay, F. Stellacci, Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10(3), 339–354 (2015). https://doi.org/10.1016/j.nantod.2015.04.002

    Article  CAS  Google Scholar 

  30. C. Radheshkumar, H. Münstedt, Morphology and mechanical properties of antimicrobial polyamide/silver composites. Mater. Lett. 59(14–15), 1949–1953 (2005). https://doi.org/10.1016/j.matlet.2005.02.033

    Article  CAS  Google Scholar 

  31. C. Radheshkumar, H. Münstedt, Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. React. Funct. Polym. 66(7), 780–788 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.11.005

    Article  CAS  Google Scholar 

  32. D. Klemenčič, B. Tomšič, F. Kovač, M. Žerjav, A. Simončič, B. Simončič, Preparation of novel fibre–silica–Ag composites: the influence of fibre structure on sorption capacity and antimicrobial activity. J. Mater. Sci. 49(10), 3785–3794 (2014). https://doi.org/10.1007/s10853-014-8090-x

    Article  CAS  Google Scholar 

  33. I.S. Tania, M. Ali, R.H. Bhuiyan, Experimental study on dyeing performance and antibacterial activity of silver nanoparticle-immobilized cotton woven fabric. Autex Res. J. 21(1), 45–51 (2021). https://doi.org/10.2478/aut-2019-0074

    Article  CAS  Google Scholar 

  34. Shahid-ul-Islam, B.S. Butola, A. Gupta, A. Roy, Multifunctional finishing of cellulosic fabric via facile, rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustain. Chem. Pharm. 12, 100135 (2019). https://doi.org/10.1016/j.scp.2019.100135

    Article  Google Scholar 

  35. M. Da Silva Pinto, C.A. Sierra-Avila, J.P. Hinestroza, In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose 19(5), 1771–1779 (2012). https://doi.org/10.1007/s10570-012-9752-y

    Article  CAS  Google Scholar 

  36. T. Pivec, S. Hribernik, M. Kolar, K.S. Kleinschek, Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohydr. Polym. 163, 92–100 (2017). https://doi.org/10.1016/j.carbpol.2017.01.060

    Article  CAS  PubMed  Google Scholar 

  37. A.G. Thite, K. Krishnanand, D.K. Sharma, A.K. Mukhopadhyay, Multifunctional finishing of cotton fabric by electron beam radiation synthesized silver nanoparticles. Radiat. Phys. Chem. 153, 173–179 (2018). https://doi.org/10.1016/j.radphyschem.2018.09.023

    Article  CAS  Google Scholar 

  38. B. Simončič, D. Klemenčič, Preparation and performance of silver as an antimicrobial agent for textiles: a review. Text. Res. J. 86(2), 210–223 (2016). https://doi.org/10.1177/0040517515586157

    Article  CAS  Google Scholar 

  39. N. Vigneshwaran, A.A. Kathe, P.V. Varadarajan, R.P. Nachane, R.H. Balasubramanya, Functional finishing of cotton fabrics using silver nanoparticles. J. Nanosci. Nanotechnol. 7(6), 1893–1897 (2007). https://doi.org/10.1166/jnn.2007.737

    Article  CAS  PubMed  Google Scholar 

  40. S. Shahidi, H. Rezaee, A. Rashidi, M. Ghoranneviss, In situ synthesis of ZnO Nanoparticles on plasma treated cotton fabric utilizing durable antibacterial activity. J. Nat. Fibers 15(5), 639–647 (2018). https://doi.org/10.1080/15440478.2017.1349714

    Article  CAS  Google Scholar 

  41. S. Shahidi, M. Rashidian, D. Dorranian, Preparation of antibacterial textile using laser ablation method. Opt. Laser Technol. 99, 145–153 (2018). https://doi.org/10.1016/j.optlastec.2017.08.025

    Article  CAS  Google Scholar 

  42. B. Mahltig, T. Textor, Silver containing sol-gel coatings on polyamide fabrics as antimicrobial finish-description of a technical application process for wash permanent antimicrobial effect. Fibers Polym. 11(8), 1152–1158 (2010). https://doi.org/10.1007/s12221-010-1152-z

    Article  CAS  Google Scholar 

  43. ŞS. Uğur, M. Sarıışık, A.H. Aktaş, M.Ç. Uçar, E. Erden, Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res. Lett. 5(7), 1204–1210 (2010). https://doi.org/10.1007/s11671-010-9627-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O.V. Abramov et al., Pilot scale sonochemical coating of nanoparticles onto textiles to produce biocidal fabrics. Surf. Coat. Technol. 204(5), 718–722 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.030

    Article  CAS  Google Scholar 

  45. I.S. Tania, M. Ali, Z. Islam, Solaiman, Development of antimicrobial activity and mechanical performances of cotton fabric treated with silver nano particles (AgNPs). Presented at the 8th BSME international conference on thermal engineering, Dhaka, Bangladesh, 2019, p. 150003. https://doi.org/10.1063/1.5115968

  46. E. Perrin Akcakoca Kumbasar, M. Bide, Reactive dye printing with mixed thickeners on viscose. Dyes Pigments 47(1–2), 189–199 (2000). https://doi.org/10.1016/S0143-7208(00)00075-9

    Article  Google Scholar 

  47. B.N. Bandyopadhyay, A.K. Mukhopadhyay, A.V. Afini, S.B. Acharekar, A new insight into the rheological properties of alginates and carboxymethyl starches for printing of reactive colours. Indian J. Fibre Textile Res. 24, 49–57 (1999)

    CAS  Google Scholar 

  48. O. Deveoglu, R. Karadag, E. Torgan, Y. Yildiz, Examination of dyeing properties of the dyed cotton fabrics with barberry (Berberis vulgaris L.). J. Nat. Fibers 17(8), 1089–1098 (2020). https://doi.org/10.1080/15440478.2018.1558143

    Article  CAS  Google Scholar 

  49. R. Mongkholrattanasit et al., Ecological dyeing of silk fabric with lac dye by using padding techniques. J. Text. Inst. 106(10), 1106–1114 (2015). https://doi.org/10.1080/00405000.2014.976957

    Article  CAS  Google Scholar 

  50. R. Mongkholrattanasit et al., Eco-dyeing of silk fabric with Garcinia Dulcis (Roxb.) kurz bark as a source of natural dye by using the padding technique. J. Nat. Fibers 13(1), 65–76 (2016). https://doi.org/10.1080/15440478.2014.984056

    Article  CAS  Google Scholar 

  51. N. Punrattanasin, M. Nakpathom, B. Somboon, N. Narumol, N. Rungruangkitkrai, R. Mongkholrattanasit, Silk fabric dyeing with natural dye from mangrove bark (Rhizophora apiculata Blume) extract. Ind. Crops Prod. 49, 122–129 (2013). https://doi.org/10.1016/j.indcrop.2013.04.041

    Article  CAS  Google Scholar 

  52. B. Yılmaz Şahinbaşkan, R. Karadag, E. Torgan, Dyeing of silk fabric with natural dyes extracted from cochineal (Dactylopius coccus Costa) and gall oak (Quercus infectoria Olivier). J. Nat. Fibers 15(4), 559–574 (2018). https://doi.org/10.1080/15440478.2017.1349708

    Article  CAS  Google Scholar 

  53. H. Cao, L. Ai, Z. Yang, Y. Zhu, Application of xanthan gum as a pre-treatment and sharpness evaluation for inkjet printing on polyester. Polymers 11(9), 1504 (2019). https://doi.org/10.3390/polym11091504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Natural Dyes. (Erscheinungsort nicht ermittelbar: IntechOpen, 2011)

  55. A.K. Sarkar, C.M. Seal, Color strength and colorfastness of flax fabrics dyed with natural colorants. Cloth. Text. Res. J. 21(4), 162–166 (2003). https://doi.org/10.1177/0887302X0402100402

    Article  Google Scholar 

  56. M.H. El-Rafie, Th.I. Shaheen, A.A. Mohamed, A. Hebeish, Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr. Polym. 90(2), 915–920 (2012). https://doi.org/10.1016/j.carbpol.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  57. K. Jyoti, M. Baunthiyal, A. Singh, Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016). https://doi.org/10.1016/j.jrras.2015.10.002

    Article  CAS  Google Scholar 

  58. S. Li, T. Zhu, J. Huang, Q. Guo, G. Chen, Y. Lai, Durable antibacterial and UV-protective Ag/TiO2@fabrics for sustainable biomedical application. Int. J. Nanomedicine 12, 2593–2606 (2017). https://doi.org/10.2147/IJN.S132035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. R. Aladpoosh, M. Montazer, N. Samadi, In situ green synthesis of silver nanoparticles on cotton fabric using Seidlitzia rosmarinus ashes. Cellulose 21(5), 3755–3766 (2014). https://doi.org/10.1007/s10570-014-0369-1

    Article  CAS  Google Scholar 

  60. Md.S. Islam et al., Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain. Chem. Eng. 6(7), 9178–9188 (2018). https://doi.org/10.1021/acssuschemeng.8b01523

    Article  CAS  Google Scholar 

  61. T.A. Elmaaty, S.M. Ramadan, S.M.N. Eldin, G. Elgamal, One step thermochromic pigment printing and AgNPs antibacterial functional finishing of cotton and cotton/PET fabrics. Fibers Polym. 19(11), 2317–2323 (2018). https://doi.org/10.1007/s12221-018-8609-x

    Article  CAS  Google Scholar 

  62. T.A. Elmaaty, Kh. El-Nagare, S. Raouf, Kh. Abdelfattah, S. El-Kadi, E. Abdelaziz, One-step green approach for functional printing and finishing of textiles using silver and gold NPs. RSC Adv. 8(45), 25546–25557 (2018). https://doi.org/10.1039/C8RA02573H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. I.S. Tania, M. Ali, Md.S. Azam, In-situ synthesis and characterization of silver nanoparticle decorated cotton knitted fabric for antibacterial activity and improved dyeing performance. SN Appl. Sci. 1(1), 64 (2019). https://doi.org/10.1007/s42452-018-0068-x

    Article  CAS  Google Scholar 

  64. I.S. Tania, M. Ali, Md.S. Azam, Mussel-inspired deposition of Ag nanoparticles on dopamine-modified cotton fabric and analysis of its functional, mechanical and dyeing properties. J. Inorg. Organomet. Polym. Mater. 31(10), 4065–4076 (2021). https://doi.org/10.1007/s10904-021-02034-w

    Article  CAS  Google Scholar 

  65. H. Zhang, J. Wang, K. Xie, L. Pei, A. Hou, Synthesis of novel green reactive dyes and relationship between their structures and printing properties. Dyes Pigments 174, 108079 (2020). https://doi.org/10.1016/j.dyepig.2019.108079

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MBAR: Experimental work, Manuscript Writing, Figure Preparation; IST: Conceptualization, experiment design, editing and reviewing, AAS: Manuscript writing, data collection; MZU: Reviewing and data analysis. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Imana Shahrin Tania.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabbi, M.B., Tania, I.S., Sani, A.A. et al. Facile Approach for Preparing Printed Cotton Fabric with Antimicrobial Activity by Utilizing the Functional Characteristics of Nano-Silver. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03047-x

Keywords

Navigation