Skip to main content
Log in

Comparison of Innovative Silver Nanoparticles Finishing Technologies to Obtain Antibacterial Properties of Cotton Fabric

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The article presents a comparison of innovative technologies of producing silver nanoparticles directly on fibrous structures using digital printing and screen printing. The research was focused on the antibacterial modification of cotton fabric using an in-situ synthesis of silver nanoparticles (AgNPs). Moreover, for the first time, the evaluation of two techniques of modification, taking into account the antibacterial effect and the consumption of chemicals, water, and energy in both processes were presented. Silver nanoparticles were prepared by direct reduction of the paste/ink containing silver salt on the fibres using screen and ink-jet printing techniques. The deposition of silver nanoparticles was confirmed by scanning electron microscopy, Raman dispersive spectroscopy, and X-ray photoelectron spectroscopy. The durability of the antibacterial effect against washing was estimated by inductively coupled plasma-mass spectrometry. Both printing techniques allow obtaining cotton fabric with long-lasting antibacterial properties (50 items of washing) against strains of Escherichia coli and Bacillus subtilis. However, the digital printing method is more environmentally friendly due to lower water and energy usage and four times lower silver concentration in fabric compared to the conventional, screen-printing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Montazer and T. Harifi in “Nanofinishing of Textile Materials” (M. Montazer and T. Harifi Eds.), pp.1–17, Woodhead Publishing, Cambridge, 2018.

  2. H. Schoenberger and T. Schaefer, “Texte 14/03 — Best Available Techniques in Textile Industry”, pp.42–57, Federal Environmental Agency, Berlin, 2003.

    Google Scholar 

  3. K. Fletcher, “Sustainable Fashion and Textiles: Design Journeys”, Routledge, 2014.

  4. C. Cie, “Ink Jet Textile Printing”, British Library, Elsevier, Woodhead Publishing, 2015.

  5. J. Pulit-Prociak and M. Banach, Open Chem., 14, 76 (2016).

    Article  CAS  Google Scholar 

  6. F. F. Larese, F. D’Agostin, M. Crosera, G. Adami, N. Renzi, M. Bovenzi, and G. Maina, Toxicology, 255, 33 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. A. B. G. Landsdown, J. Wound Care, 11, 125 (2002).

    Article  Google Scholar 

  8. J. Roszak, A. Smok-Pieniazek, S. Spryszynska, K. Kowalczyk, K. Domeradzka-Gajda, R. Swiercz, J. Grobelny, E. Tomaszewska, K. Ranoszek-Soliwoda, G. Celichowski, M. Cieslak, D. Puchowicz, and M. Stepnik, J. Hazard Mater., 392, 122442 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. M. V. D. Z. Park, A. M. Neigh., J. P. Vermeulen, L. J. J. de la Fonteyne, H. W. Verharen, and J. J. Briedé, Biomaterials, 32, 9810 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. E. A. Melnik, Y. P. Buzulukov, V. F. Demin, V. A. Demin, I. V. Gmoshinski, N. V. Tyshko, and V. A. Tutelyan, Acta Naturae, 5, 107 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. Castellini, S. Ruggeri, S. Mattioli, G. Bernardini, L. Macchioni, and E. Moretti, Syst. Biol. Reprod. Med., 60, 143 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. L. Hritcu, M. Stefan, L. Ursu, A. Neagu, M. Mihasan, and L. Tartau, Cent. Eur. J. Biol., 6, 497 (2011).

    CAS  Google Scholar 

  13. Y. Liu, W. Guan, G. Ren, and Z. Yang, Toxicol. Lett., 209, 227 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. S. A. Blaster, M. Scheringer, M. MacLeod, and K. Hungerbuhler, Sci. Total Environ., 390, 396 (2008).

    Article  Google Scholar 

  15. H. Saleem and S. J. Zaidi, Materials, 13, 5134 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  16. H. A. Abu-Qdais, M. A. Abu-Dalo, and Y. Y. Hajeer, Sustainability, 13, 3436 (2021).

    Article  CAS  Google Scholar 

  17. L. Pourzahedi, M. Vance, and M. J. Eckelman, Environ. Sci. Technol., 51, 7148 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. M. Pollinim, M. Russo, and A. Licciulli, J. Mat. Sci: Mater. Med., 20, 2361 (2009).

    Google Scholar 

  19. H. J. Lee, S. Y. Yeo, and S. H. Jeong, J. Mater. Sci: Mater. Med., 38, 2199 (2003).

    Article  CAS  Google Scholar 

  20. J. Scholza, G. Nocke, F. Hollstein, and A. Weissbach, Surf. Coat. Technol., 192, 252 (2005).

    Article  Google Scholar 

  21. F. Zhang, X. Wu, Y. Chen, and H. Lin, Fiber. Polym., 10, 496 (2009).

    Article  CAS  Google Scholar 

  22. E. Matyjas-Zgondek, A. Bacciarelli, E. Rybicki, M. I. Szynkowska, and M. Kołodziejczyk, Fibres Text East Eur., 69, 108 (2008).

    Google Scholar 

  23. P. Lyczkowska, M. Cieslak, J. Grobelny, and I. Kaminska in “Nanoczastki i Nanomaterialy” (J. Gromadzinska and W. Wasowicz Eds.), pp.73–83, Lodz: Zarząd Glowny Polskiego Towarzystwa Toksykologicznego, Lodz, 2013.

  24. Z. Ma, M. Yin, Z. Qi, and X. Ren, Fiber. Polym., 19, 2097 (2018).

    Article  CAS  Google Scholar 

  25. R. Begam, M. Joshi, and R. R. Purwar, Fiber. Polym., 23, 148 (2022).

    Article  CAS  Google Scholar 

  26. A. Bacciarelli-Ulacha, E. Rybicki, E. Matyjas-Zgondek, A. Pawlaczyk, and M. I. Szynkowska, Ind. Eng. Chem. Res., 53, 4147 (2014).

    Article  CAS  Google Scholar 

  27. Z. G. Gök, A. Demiral, O. Bozkaya, and M. Yiğitoğlu, Polym. Bull., 78, 7241 (2021).

    Article  Google Scholar 

  28. G. Montes-Hernandez, M. Di Girolamo, G. Sarret, S. Bureau, A. Fernandez-Martinez, C. Lelong, and E. E. Vernain, ACS Omega, 6, 1316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. N. I. Khan, A. G. Maddaus, and E. Song, Biosensors, 8, 7 (2018).

    Article  PubMed Central  Google Scholar 

  30. R. M. El-Shishtawy, A. M. Asiri, N. A. M. Abdelwahed, and M. M. Al-Otaibi, Cellulose, 18, 75 (2011).

    Article  CAS  Google Scholar 

  31. A. M. El Badawy, K. G. Scheckel, M. Suidan, and T. Tolaymat, Sci. Total Environ., 429, 325 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. B. V. Crist, XPS, “Handbook of the Elements and Native Oxides”, XPS International Inc., 1999.

  33. D. Briggs and M. P. Seah (Eds.), “Practical Surface Analysis: By Auger and X-ray Photoelectron Spectroscopy”, Ap. Auger and Photoelectron Energies, 503, John Wiley & Sons, Chichester, 1983.

    Google Scholar 

  34. D. Puchowicz, P. Giesz, M. Kozanecki, and M. Cieślak, Talanta, 195, 516 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. K. Kavkler and A. Demsar, Spectrochim Acta Part A, 78, 740 (2011).

    Article  Google Scholar 

  36. C. B. Wang, G. Deo, and I. E. Wachs, J. Phys. Chem. B, 103, 5645 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bacciarelli-Ulacha.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacciarelli-Ulacha, A., Matyjas-Zgondek, E., Puchowicz, D. et al. Comparison of Innovative Silver Nanoparticles Finishing Technologies to Obtain Antibacterial Properties of Cotton Fabric. Fibers Polym 23, 2606–2615 (2022). https://doi.org/10.1007/s12221-022-4327-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4327-5

Keywords

Navigation