Skip to main content
Log in

A DFT Study of Bandgap Engineering and Tuning of Structural, Electronic, Optical, Mechanical and Transport Properties of Novel [Ba4Sb4Se11]: Sr3+ Selenoantimonate for Optoelectronic and Energy Exploitations

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The comprehensive first-principles analysis of Ba4Sb4Se11 and [Ba4Sb4Se11]:Sr3+ Selenoantimonate Using DFT demonstrates its semiconductor nature, anisotropic ductile properties, and prospective optoelectronic applications, particularly in solar cells and LED technologies, supported by comprehensive structural, electronic, optical, and mechanical studies. All the relevant parameters were determined in this investigation using the framework of DFT by modified Becke Johnson approximations. These parameters include the extinction coefficient, absorption coefficient, energy loss function, reflectivity, refractive index, optical conductivity, and birefringes. The elastic parameters have been calculated based on anisotropic sound velocities and mechanical stability. These parameters include bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio. Based on an analysis of the energy band dispersions, it can be concluded that the examined compounds possess semiconductor properties. The data on elastic parameters suggest that the material exhibits anisotropic and ductile characteristics, which could have potential applications in optoelectronics. The Ba4Sb4Se11 (2.2 eV) and [Ba4Sb4Se11]: Sr3+ (1.68 eV) have a direct band gap, which falls within the visible spectrum showing semiconducting nature. The analysis of the thermoelectric properties of investigated compounds has been conducted using the Boltztrap code, marking a significant in scientific research. The study revealed that these compounds have the potential to be utilized in highly challenging transport conditions. Additional investigations and cooperation are essential for understanding the fundamental processes and enhancing the material for effective utilization in various technological applications for solar cells and LED in the energy and optoelectronic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All the related data is available from the authors upon request.

References

  1. G. Cordier, R. Cook, H. Schäfer, Novel selenoantimonate (iii) anions in Ba4Sb4Se11. Angew. Chem. Int. Ed. Engl. 19(4), 324–325 (1980)

    Article  Google Scholar 

  2. A. Manongdo, Facile amine-surfactant thermal syntheses, structures, and properties of novel crystalline silver thioantimonates (2017)

  3. Z. Huang et al., A sulfur-doped carbon-enhanced Na3V2(PO4)3 nanocomposite for sodium-ion storage. J. Phys. Chem. Solids 167, 110746 (2022)

    Article  CAS  Google Scholar 

  4. Z. Huang et al., Constructing one-dimensional mesoporous carbon nanofibers loaded with NaTi2(PO4)3 nanodots as novel anodes for sodium energy storage. J. Phys. Chem. Solids 161, 110479 (2022)

    Article  CAS  Google Scholar 

  5. X.-F. Chen, Periodic density functional theory (PDFT) simulating crystal structures with microporous CHA framework: an accuracy and efficiency study. Inorganics 11(5), 215 (2023)

    Article  Google Scholar 

  6. H. Schnöckel, Matrix isolation of OSiS: IR spectroscopic evidence for the Si=S double bond. Angew. Chem. Int. Ed. Engl. 19(4), 323–324 (1980)

    Article  Google Scholar 

  7. S.A. Vaselabadi et al., Scalable synthesis of selenide solid-state electrolytes for sodium-ion batteries. Inorg. Chem. 62(42), 17102–17114 (2023)

    Article  CAS  PubMed  Google Scholar 

  8. X. Chen, T. Yu, Simulating crystal structure, acidity, proton distribution, and IR spectra of acid zeolite HSAPO-34: a high accuracy study. Molecules 28(24), 8087 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Ye et al., Design strategies for perovskite-type high-entropy oxides with applications in optics. ACS Appl. Mater. Interfaces. 15(40), 47475–47486 (2023)

    Article  CAS  PubMed  Google Scholar 

  10. L. Pan et al., Reassessing self-healing in metallized film capacitors: a focus on safety and damage analysis. IEEE Trans. Dielectr. Electr. Insul. (2024). https://doi.org/10.1109/TDEI.2024.3357441

    Article  Google Scholar 

  11. I. Hadar et al., Modern processing and insights on selenium solar cells: the world’s first photovoltaic device. Adv. Energy Mater. 9(16), 1802766 (2019)

    Article  Google Scholar 

  12. B.J. Stanbery, Copper indium selenides and related materials for photovoltaic devices. Crit. Rev. Solid State Mater. Sci. 27(2), 73–117 (2002)

    Article  CAS  Google Scholar 

  13. J. Guo et al., Resurrected and tunable conductivity and ferromagnetism in the secondary growth La0.7Ca0.3MnO3 on transferred SrTiO3 membranes. Nano Lett. 24, 1114 (2024)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Wang et al., Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: possessed redox characteristics and secreted endogenous electron mediator. Sci. Total Environ. 781, 146686 (2021)

    Article  CAS  Google Scholar 

  15. Z.-Z. Luo et al., Extraordinary role of Zn in enhancing thermoelectric performance of Ga-doped n-type PbTe. Energy Environ. Sci. 15(1), 368–375 (2022)

    Article  CAS  Google Scholar 

  16. Y. Wu et al., Metastable structures with composition fluctuation in cuprate superconducting films grown by transient liquid-phase assisted ultra-fast heteroepitaxy. Mater. Today Nano 24, 100429 (2023)

    Article  CAS  Google Scholar 

  17. Y. Lu et al., Mixed-mode operation of hybrid phase-change nanophotonic circuits. Nano Lett. 17(1), 150–155 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Z. Huang et al., Improved electrical resistivity-temperature characteristics of oriented hBN composites for inhibiting temperature-dependence DC surface breakdown. Appl. Phys. Lett. (2023). https://doi.org/10.1063/5.0166638(10)

    Article  Google Scholar 

  19. A. Kertman, N. Shal’neva, Phase equilibria in the BaS–Ga2S3 system. Russ. J. Inorg. Chem. 61, 109–114 (2016)

    Article  CAS  Google Scholar 

  20. P. Mukdeeprom-Burckel, J.G. Edwards, Chemistry and thermodynamics of solid and vapor phases in the barium-sulfide, gallium-sulfide system. Mater. Res. Bull. 25(2), 163–172 (1990)

    Article  CAS  Google Scholar 

  21. M.R. Davolos et al., Luminescence of Eu2+ in strontium and barium thiogallates. J. Solid State Chem. 83(2), 316–323 (1989)

    Article  CAS  Google Scholar 

  22. L. Sokolovskaya, S. Kvyatkovskiy, A. Semenova, Barite phase formations during lead and zinc oxidized ores sintering. Integr. Min. Raw Mater. 1, 304 (2018)

    Google Scholar 

  23. H.A. Petersen et al., Electrochemical methods for materials recycling. Mater. Adv. 2(4), 1113–1138 (2021)

    Article  CAS  Google Scholar 

  24. M.A. Shah et al., Applications of nanotechnology in smart textile industry: a critical review. J. Adv. Res. 38, 55–75 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. R. Arvidsson, B.A. Sandén, Carbon nanomaterials as potential substitutes for scarce metals. J. Clean. Prod. 156, 253–261 (2017)

    Article  CAS  Google Scholar 

  26. J. Zhu et al., An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv. 3(45), 22790–22824 (2013)

    Article  CAS  Google Scholar 

  27. P.I. Dolez, Nanomaterials definitions, classifications, and applications, in Nanoengineering. (Elsevier, Amsterdam, 2015), pp.3–40

    Chapter  Google Scholar 

  28. X. Feng et al., Construction of CdS@ ZnO core–shell nanorod arrays by atomic layer deposition for efficient photoelectrochemical H2 evolution. Sep. Purif. Technol. 324, 124520 (2023)

    Article  CAS  Google Scholar 

  29. Y. Zhang et al., Tuning the red-to-green-upconversion luminescence intensity ratio of Na3ScF6: 20% Yb3+, 2% Er3+ particles by changes in size. Materials 16(6), 2247 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M.S. Khan et al., Tailoring the optoelectronic, thermoelectric, and thermodynamic properties of rare-earth quaternary chalcogenides: an inclusive first-principles study. Mater. Today Commun. 38, 107848 (2024)

    Article  CAS  Google Scholar 

  31. D. Liu et al., Alloy engineering to tune the optoelectronic properties and photovoltaic performance for Hf-based chalcogenide perovskites. Mater. Sci. Semicond. Process. 169, 107919 (2024)

    Article  CAS  Google Scholar 

  32. S. Goumri-Said et al., Unraveling essential optoelectronic and thermoelectric excellence in CsZrCuSe3 with hybrid functional and Boltzmann transport insights. Res. Phys. 57, 107395 (2024)

    Google Scholar 

  33. B. Zhang et al., Determination and assessment of a complete and self-consistent electron-neutral collision cross-section set for the C4F7N molecule. J. Phys. D Appl. Phys. 56(13), 134001 (2023)

    Article  Google Scholar 

  34. X. Song et al., Control of the electron dynamics in solid-state high harmonic generation on ultrafast time scales by a polarization-skewed laser pulse. Opt. Express 31(12), 18862–18870 (2023)

    Article  CAS  PubMed  Google Scholar 

  35. X. Liu, L. Zhang, J. Wang, Design strategies for MOF-derived porous functional materials: preserving surfaces and nurturing pores. J. Materiomics 7(3), 440–459 (2021)

    Article  Google Scholar 

  36. M. Kalaj et al., MOF-polymer hybrid materials: from simple composites to tailored architectures. Chem. Rev. 120(16), 8267–8302 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. T. Wu, J. Wang, Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy 66, 104070 (2019)

    Article  CAS  Google Scholar 

  38. S. Dahbi et al., Importance of spin-orbit coupling on photovoltaic properties of Pb-free vacancy ordered double perovskites halides X2TeY6 (X= Cs, Rb, and Y= I, Br, Cl): first-principles calculations. Int. J. Energy Res. 46(6), 8433–8442 (2022)

    Article  CAS  Google Scholar 

  39. P. Kumari et al., A first-principles prediction of thermophysical and thermoelectric performances of SrCeO3 perovskite. Int. J. Energy Res. 46(3), 2934–2946 (2022)

    Article  CAS  Google Scholar 

  40. D. Hoat, J.R. Silva, A.M. Blas, First principles study on structural, electronic and optical properties of Ga1− xBxP ternary alloys (x= 0, 0.25, 0.5, 0.75 and 1). Phys. Lett. A 382(29), 1942–1949 (2018)

    Article  CAS  Google Scholar 

  41. M.N. Rasul et al., DFT based structural, electronic and optical properties of B1−xInxP (x= 0.0, 0.25, 0.5, 0.75, 1.0) compounds: PBE-GGA vs. mBJ-approaches. Chin. J. Phys. 56(6), 2659–2672 (2018)

    Article  CAS  Google Scholar 

  42. A. Radzwan et al., First-principles calculations of the stibnite at the level of modified Becke–Johnson exchange potential. Chin. J. Phys. 56(3), 1331–1344 (2018)

    Article  Google Scholar 

  43. G.J. Snyder, T.S. Ursell, Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91(14), 148301 (2003)

    Article  PubMed  Google Scholar 

  44. M. Blanco, E. Francisco, V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158(1), 57–72 (2004)

    Article  CAS  Google Scholar 

  45. V. Milman, M. Warren, Elastic properties of TiB2 and MgB2. J. Phys.: Condens. Matter 13(24), 5585 (2001)

    CAS  Google Scholar 

  46. A.A. Emery, C. Wolverton, High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 4(1), 1–10 (2017)

    Article  Google Scholar 

  47. S. Jana et al., Extremely low thermal conductivity in BaSb2Se4: Synthesis, characterization, and DFT studies. J. Solid State Chem. 315, 123524 (2022)

    Article  CAS  Google Scholar 

  48. D. Mei et al., Syntheses and characterization of two new selenides Ba5Al2Se8 and Ba5Ga2Se8. J. Alloy. Compd. 509(6), 2981–2985 (2011)

    Article  CAS  Google Scholar 

  49. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, Hoboken, 2008)

    Google Scholar 

  50. F. Gervais, Optical conductivity of oxides. Mater. Sci. Eng. R. Rep. 39(2–3), 29–92 (2002)

    Article  Google Scholar 

  51. Q. Zhang et al., An all-organic composite actuator material with a high dielectric constant. Nature 419(6904), 284–287 (2002)

    Article  CAS  PubMed  Google Scholar 

  52. L.B. Wolff, Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990)

    Article  Google Scholar 

  53. R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope (Springer, Cham, 2011)

    Book  Google Scholar 

  54. I. Liberal, N. Engheta, How does light behave in a material whose refractive index vanishes? Phys. Today 75(3), 62–63 (2022)

    Article  CAS  Google Scholar 

  55. D. Kuang et al., High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. J. Am. Chem. Soc. 128(12), 4146–4154 (2006)

    Article  CAS  PubMed  Google Scholar 

  56. D.O. Dorohoi et al., Review on optical methods used to characterize the linear birefringence of polymer materials for various applications. Molecules 28(7), 2955 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. J. Gosline et al., Elastic proteins: biological roles and mechanical properties. Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 357(1418), 121–132 (2002)

    Article  CAS  Google Scholar 

  58. J. Pokluda et al., Ab initio calculations of mechanical properties: methods and applications. Prog. Mater Sci. 73, 127–158 (2015)

    Article  CAS  Google Scholar 

  59. R. Hearmon, The elastic constants of anisotropic materials—II. Adv. Phys. 5(19), 323–382 (1956)

    Article  Google Scholar 

  60. E. Ptochos, G. Labeas, Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. J. Sandwich Struct. Mater. 14(5), 597–626 (2012)

    Article  Google Scholar 

  61. Y. Luo, Isotropized Voigt-Reuss model for prediction of elastic properties of particulate composites. Mech. Adv. Mater. Struct. 29(25), 3934–3941 (2022)

    Article  Google Scholar 

  62. E. Broitman, Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview. Tribol. Lett. 65(1), 23 (2017)

    Article  Google Scholar 

  63. C. Sweeney et al., The role of elastic anisotropy, length scale and crystallographic slip in fatigue crack nucleation. J. Mech. Phys. Solids 61(5), 1224–1240 (2013)

    Article  Google Scholar 

  64. Y. Duan et al., Anisotropic elastic properties of the Ca–Pb compounds. J. Alloy. Compd. 595, 14–21 (2014)

    Article  CAS  Google Scholar 

  65. G.K. Madsen, J. Carrete, M.J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018)

    Article  CAS  Google Scholar 

  66. O. García et al., Single phase power factor correction: a survey. IEEE Trans. Power Electron. 18(3), 749–755 (2003)

    Article  Google Scholar 

  67. M. Irfan et al., Fe and Rh doping nanoarchitectonics on properties of Sr2YGaX2O7 pyrochlore oxides with a DFT-based spin-polarized calculation for optoelectronic and thermoelectric applications. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02845-z

    Article  Google Scholar 

  68. N. Neophytou, Theory and simulation methods for electronic and phononic transport in thermoelectric materials (Springer, Cham, 2020)

    Book  Google Scholar 

  69. G. Naydenov et al., Effective modelling of the Seebeck coefficient of Fe2VAl. J. Phys.: Condens. Matter 32(12), 125401 (2019)

    PubMed  Google Scholar 

  70. O. Garcia et al., Power factor correction: a survey. In 2001 IEEE 32nd annual power electronics specialists conference (IEEE Cat. No. 01CH37230). IEEE (2001)

  71. X. Guan, J. Ouyang, Enhancement of the Seebeck coefficient of organic thermoelectric materials via energy filtering of charge carriers. CCS Chem. 3(10), 2415–2427 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This project is sponsored by Prince Sattam Bin Abdulaziz University (PSAU) as part of funding for its SDG Roadmap Research Funding Programme project number PSAU-2023- SDG-95.

Author information

Authors and Affiliations

Authors

Contributions

The Authors, KH and SA, suggest the idea. MI and MHT calculated the material’s electronic properties, analyzed the data in the initial draft, and helped improve the manuscript until the final version. The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Kakul Husain or Sana Ullah Asif.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

We, the undersigned, declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all have agreed on the order of authors listed in the manuscript us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husain, K., Irfan, M., Asif, S.U. et al. A DFT Study of Bandgap Engineering and Tuning of Structural, Electronic, Optical, Mechanical and Transport Properties of Novel [Ba4Sb4Se11]: Sr3+ Selenoantimonate for Optoelectronic and Energy Exploitations. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03039-x

Keywords

Navigation