Skip to main content
Log in

Thermo-Electric Properties of Conductive Cotton Fabrics: Synergistic Effects of Graphene Doping Ratio and Amount

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Graphene is a highly promising nanomaterial due to its unique properties, including high conductivity, which makes it an ideal material for constructing conductive textiles. However, current techniques for functionalizing conductive textiles with graphene face challenges such as low conductivity and the need for chemical modification to reduce graphene oxide. In this paper, we present a simple and environmentally friendly method for producing highly conductive cotton fabrics using graphene powder as the conductive material, without the need for any additives. Our innovative method involves dispersing graphene in organic solvents to create a graphene suspension solution, which is then used to produce conductive cotton fabrics using drop casting and dip coating techniques. The results of this study demonstrate that the electrical conductivity of conductive fabrics infused with graphene is influenced by several factors, including the preparation method, the type of solvents used, and the doping ratio and amount of graphene added. Notably, the highest level of conductivity in cotton fabrics was achieved using graphene doped with dimethyl sulfoxide (DMSO), which resulted in a lower sheet resistance of 0.097 kΩ/sq at a saturation concentration of 84.93 wt%. These conductive fabrics are therefore excellent candidates for a wide range of technological applications. Furthermore, the sheet resistance value obtained in this study was lower than that reported in previous literature. Additionally, the conductive fabrics exhibited semiconductor behavior over a temperature range of 30 ℃ to 130 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data of this investigation are included in the article.

References

  1. M.F. Favatela, J. Otarola, V.B. Peña, G. Dolcini, S. Perez, A.T. Nicolini, V.A. Alvarez, Lassalle. Development and characterization of Antimicrobial textiles from ChitosanBased compounds: possible biomaterials against SARSCoV-2 viruses. J. Inorg. Organomet. Polym. 32, 1473–1486 (2022)

    Article  CAS  Google Scholar 

  2. Y. Huang, L. Wang, X. Li, X. Yang, W. Lü, Washable all-in-one self-charging power unit based on a triboelectric nanogenerator and supercapacitor for smart textiles. Langmuir. (2023). https://doi.org/10.1021/acs.langmuir.3c00909

    Article  PubMed  Google Scholar 

  3. S. Newby, W. Mirihanage, A. Fernando, Modern developments for Textile-based supercapacitors. ACS Omega. 8, 14, 12613–12629 (2023). https://doi.org/10.1021/acsomega.3c01176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F.A. Alamer, A. Aldeih, O. Alsalmi, K. Althagafy, M. Al-Dossari, Construction of an Electrical Conductor, Strain Sensor, Electrical Connection and Cycle Switch Using Conductive Graphite Cotton Fabrics. Polymers 2022, 14, 4767. https://doi.org/10.3390/polym14214767

  5. S. Si, C. Sun, J. Qiu, J. Liu, J. Yang, Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles. Appl. Mater. Today. 27, 101508 (2022). https://doi.org/10.1016/j.apmt.2022.101508

    Article  Google Scholar 

  6. M. B-Sogó, L. GCarmona, M. GAgustí, L. Zubizarreta, M. GPellicer, A. QLópez, Enzymatic glucosebased biobatteries: bioenergy to fuel nextgeneration devices. Top. Curr. Chem. 378, 49 (2020). https://doi.org/10.1007/s41061-020-00312-8

    Article  CAS  Google Scholar 

  7. Y. Gao, J.H. Cho, J. Ryu, S. Choi, A scalable yarn-based biobattery for biochemical energy harvesting in smart textiles. Nano Energy. 74, 104897 (2020). https://doi.org/10.1016/j.nanoen.2020.104897

    Article  CAS  Google Scholar 

  8. F.A. Alamer, W. Aqiely, Eco-friendly, low-cost, and flexible cotton fabric for capacitive touchscreen devices based on graphite. Crysrals. 13(3), 403 (2023). https://doi.org/10.3390/cryst13030403

    Article  CAS  Google Scholar 

  9. K. Jost, C.R. Perez, J.K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, Carbon coated textiles for flexible energy storage. Energy Environ. Sci. 4, 5060 (2011). https://doi.org/10.1039/C1EE02421C

    Article  CAS  Google Scholar 

  10. T. Harifi, M. Montazer, A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates. Ultrason. Sonochem. 23, 1–10 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. A.H. Keshavarz, M. Mohseni, M. Montazer, Electro-conductive modification of polyethylene terephthalate fabric with nano carbon black and washing fastness improvement by dopamine self-polymerized layer. J. Appl. Polym. Sci. 136(41), 48035 (2019)

    Article  Google Scholar 

  12. Y. Wu, D.B. Farmer, F. Xia, P. Avouris, Graphene electronics: Materials, devices, and circuits. Proc IEEE 2013, 101(7), 1620–1637. https://doi.org/10.1109/JPROC.2013.2260311

  13. F.A. Alamer, R. Beyari, Overview of the influence of silver, gold, and titanium nanoparticles on the physical properties of PEDOT: PSS-coated cotton fabrics. Nanomaterials. 12, 1609 (2022)

    Article  Google Scholar 

  14. F.A. Alamer, K. Althagafy, O. Alsalmi, A. Aldeih, H. Alotaiby, M. Althebaiti, H. Alghamdi, N. Alotibi, A. Saeedi, Y. Zabarmawi, M. Hawsawi, M. Alnefaie, Review on PEDOT:PSS-based conductive fabric. ACS Omega. 40, 35371–35386 (2022)

    Article  Google Scholar 

  15. F.A. Alamer, Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose. 25, 2075–2082 (2018)

    Article  CAS  Google Scholar 

  16. F.A. Alamer, Simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT: PSS. J. Alloys Compd. 702, 266–273 (2017)

    Article  Google Scholar 

  17. F.A. Alamer, The effects of temperature and frequency on the conductivity and dielectric properties of cotton fabric impregnated with doped PEDOT: PSS. Cellulose 2018, 25 (10), 6221 – 6230

  18. F.A. Alamer, N.M. Badawi, A. Alodhayb, R.M. Okasha, N.A. Kattan, Effect of dopant on the conductivity and stability of three different cotton fabrics impregnated with PEDOT: PSS. Cellulose 2020, 27 (1), 531 – 543. (118)

  19. M.T. Otley, F.A. Alamer, Y. Guo, J. Santana, E. Eren, M. Li, J. Lombardi, G.A. Sotzing, Phase segregation of PEDOT:PSS on textile to produce materials of > 10 a Mm– 2 current carrying capacity. Macromol. Mater. Eng. 302(3), 1600348 (2017)

    Article  Google Scholar 

  20. A. Nafady, M.D. Albaqami, A.M. Alotaibi, Recycled polypropylene Waste as Abundant source for Antimicrobial, Superhydrophobic and Electroconductive Nonwoven Fabrics Comprising Polyaniline/Silver Nanoparticles. J. Inorg. Organomet. Polym. 33, 1306–1316 (2023). https://doi.org/10.1007/s10904-023-02562-7

    Article  CAS  Google Scholar 

  21. F.A. Alamer, G. Almalki, Fabrication of conductive fabrics based on SWCNTs, MWCNTs and graphene and their applications: a review. Polymers. 24, 5376 (2022)

    Article  Google Scholar 

  22. F.A. Alamer, N.M. Badawi, O. Alsalmi, Preparation and characterization of conductive cotton fabric impregnated with single-walled carbon nanotubes. J. Electron. Mater. 49(11), 6582–6589 (2020)

    Article  Google Scholar 

  23. F.A. Alamer, Badawi, manufacturing organic environmentally friendly electrical circuits using the composites’ single-walled carbon nanotubes and PEDOT: PSS. Energy Technol. 10(2), 2100830 (2022)

    Article  Google Scholar 

  24. F.A. Alamer, M.A. Alnefaie, Preparation, and characterization of multi-walled carbon nanotubes-filled cotton fabrics. Results in Phys. 33, 105205 (2022)

    Article  Google Scholar 

  25. S.J. Woltornist, F.A. Alamer, A. McDannald, M. Jain, G.A. Sotzing, D.H. Adamson, Preparation of conductive graphene/ graphite infused fabrics using an interface trapping method. Carbon. 81, 38–42 (2015)

    Article  CAS  Google Scholar 

  26. S.K. Sinha, F.A. Alamer, S.J. Woltornist, Y. Noh, F. Chen, A. McDannald, C. Allen, R. Daniels, A. Deshmukh, M. Jain, K. Chon, D.H. Adamson, G.A. Sotzing, Graphene and poly(3,4-ethylene dioxythiophene):poly(4-styrenesulfonate) on nonwoven fabric as a room temperature metal and its application as dry electrodes for electrocardiography. ACS Appl. Mater. Interfaces. 11(35), 32339–32345 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. H. Munir, F. Rasul, A. Ahmad, M. Sajid, S. Ayub, M. Arif, P. Iqbal, A. Khan, Z. Fatima, S. Ahmad, M. Khan, Diverse Uses of Cotton: From Products to Byproducts. 2020, 629–641 https://doi.org/10.1007/978-981-15-1472-2_30

  28. S. Khalilabad, M.E. Yazdanshenas, Fabricating electroconductive cotton textiles using graphene. Carbohydr. Polym. 96(1), 190–195 (2013)

    Article  Google Scholar 

  29. R.S. Jassas, E.U. Mughal, A. Sadiq, R.I. Alsantali, M.M. Al-Rooqi, N. Naeem, Z. Moussa, S.A. Ahmed, Scholl Reaction as a powerful Tool for the synthesis of nanographenes: a systematic review. RSC Adv. 11, 32158–32202 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Gan, S. Shang, C.W.M. Yuen, S.-X. Jiang, Graphene nanoribbon coated flexible and conductive cotton fabric. Compos. Sci. Technol. 117, 208–214 (2015)

    Article  CAS  Google Scholar 

  31. I.A. Sahito, K.C. Sun, A.A. Arbab, M.B. Qadir, Y.S. Choi, S.H. Jeong, Flexible and conductive cotton fabric counter electrode coated with graphene nanosheets for high efficiency dye sensitized solar cell. J. Power Sources. 319, 90–98 (2016)

    Article  CAS  Google Scholar 

  32. J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen, Y. Yin, F. Torrisi, Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon. 111, 622–630 (2017)

    Article  CAS  Google Scholar 

  33. H.M. Altass, S.A. Ahmed, R.S. Salama, Z. Moussa, R.S. Jassas, R.I. Alsantali, M.M. Al-Rooqi, A.A. Ibrahim, M.A. Khder, M. Morad, A.I. Ahmed, A.S. Khder, Low temperature CO oxidation over highly active gold nanoparticles supported on reduced graphene oxide @ Mg-BTC Nanocomposite. Catal. Lett. 153, 876–886 (2023)

    Article  CAS  Google Scholar 

  34. O.O. Alameer, A. Timoumi, N. El Guesmi, S.N. Alamri, W. Belhadj, K. Althagafi, S.A. Ahmed, Expoloriting of graphene oxide for improving of physical properties of TiO2(NPs): towards photovoltaic devices and wastewater remediation approaches. Eur. Phys. J. Plus. 137, 1160, 1–11 (2022)

    Article  Google Scholar 

  35. H.M. Altass, M. Morad, A.S. Khder, M.A. Mannaa, R.S. Jassas, A.A. Alsimaree, S.A. Ahmed, Salama enhanced Catalytic Activity for CO Oxidation by highly active pd nanoparticles supported on reduced Graphene Oxide /Copper MetalOrganic. Framew. J Taiwan Inst Chem Eng. 128, 194–208 (2021)

    Article  CAS  Google Scholar 

  36. I.I. Althagafi, S.A. Ahmed, W.A. El-Said, Fabrication of gold/graphene nanostructures modified ITO electrode as highly sensitive electrochemical detection of aflatoxin BI. PloS One. 16, 1–14 (2019)

    Google Scholar 

  37. K. Albaidani, A. Timoumi1, W. Belhadj, S.N. Alamri, S.A. Ahmed, Structural, electronic and optical characteristics of TiO2 and Cu-TiO2 thin films produced by sol-gel spin coating. Ceram. Int. 49(22), 36265–36275 (2023)

    Article  CAS  Google Scholar 

  38. A. 1 Timoumi, S.N. Alamri, O.H. Alsalmi, A.M. Saeedi, S.A. Ahmed, Unique growth and study on the unprecedented effects of Fe doping Cu2AlSnS4 material fabricated by single Vacuum System. J. Inorg. Organomet. Polym. 33, 3146–3156 (2023)

    Article  CAS  Google Scholar 

  39. J. Koaib, D.F. Katowah, A. Timoumi, N. Bouguila, S.A. Ahmed, Unique properties of novel binary P(Py-co-OT)/MFe2O4 (M = ni, Cu, and Co) nanocomposites for renewable energy storage applications. Inorg. Organomet. Polym. 33, 2270–2278 (2023)

    Article  CAS  Google Scholar 

  40. A. Timoumi, N.E. Guesmi, S.N. Alamri, O.H. Alsalmi, S.A. Ahmed, Highly efficient photocatalytic degradation of organic polluants over Cu2AlSnS (CATS) thin films: synthesis, characterization and photocatalysis Approach. Inorg. Organomet. Polym. 33, 1592–16022023

  41. T. Skaltsas, N. Karousis, H.J. Yan, C.R. Wang, S. Pispas, N. Tagmatarchis, Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic block copolymers. J. Mater. Chem. A 22(40), 21507–21512 (2012)

    Article  CAS  Google Scholar 

  42. R.K. Hiremath, M.K. Rabinal, B.G. Mulimani, Simple setup to measure electrical properties of polymeric films. Rev. Sci. Instrum. 77, 126106 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors are contributed in all manuscript work and writing and revising the manuscript.

Corresponding authors

Correspondence to Fahad Alhashmi Alamer or Saleh A. Ahmed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamer, F.A., Althagafy, K., Alghamdi, H. et al. Thermo-Electric Properties of Conductive Cotton Fabrics: Synergistic Effects of Graphene Doping Ratio and Amount. J Inorg Organomet Polym (2023). https://doi.org/10.1007/s10904-023-02918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-023-02918-z

Keywords

Navigation