Skip to main content
Log in

Synthesis and Tuning the Structural, Optical and Electrical Behavior of PVA-SiC-BaTiO3 Polymer Nanostructures for Photonics and Electronics Nanodevices

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This study aims to fabricate thick films of polyvinyl alcohol containing (SiC-BaTiO3) nanoparticles in order to improve their structural, optical, and electrical characteristics. The (PVA-SiC-BaTiO3) nanocomposite films are made utilize the casting method. According to optical microscope images, the (SiC-BaTiO3) nanoparticles create a persistent network inside the polymer compared to pure (PVA). FTIR reveals that the peak position, peak shape, and intensity are shifting. When (SiC-BaTO3) nanoparticle concentrations were increased to (6 wt%), optical tests revealed that the absorbance of (PVA-SiC-BaTiO3) nanocomposites enhanced from 50 to 98%. Meanwhile, the energy gap of (PVA-SiC-BaTiO3) nanocomposites declined from (4.42 to 3.56) eV and from (4.1 to 2.85) eV for the allowed and forbidden indirect transitions, respectively. These findings could be important for using (PVA-SiC-BaTiO3) nanostructures in diverse optics applications and nanotechnology. As well as an increase in optical parameters including optical conductivity, real and imaginary dielectric constants, refractive index, absorption coefficient, and extinction coefficient. The dielectric loss (ε″) and dielectric constant (ε′) for nanocomposites reduce as the frequency of the applied electrical field rises but increase as the concentration of nanoparticles (NPs) rises. When the (SiC-BaTiO3) concentration reached (6 wt%) at a frequency of 100 Hz, A.C. electrical conductivity (σa.c) and dielectric constant increases by around 90% and 130%, respectively. Based on the results, doping PVA with (SiC-BaTiO3) NPs enhanced the optical, structural, and A.C electrical properties, making the (PVA-SiC-BaTiO3) nanostructures promising materials for various optoelectronic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Available.

References

  1. T.P. Nguyen, Polymer-based nanocomposites for organic optoelectronic devices. A review. Surf. Coat. Technol. 206(4), 742–752 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.010

    Article  CAS  Google Scholar 

  2. A.H. Hadi, M.A. Habeeb, The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications. J Phys.: Conf. Ser. 1973(1), 01206310 (2021).

    Google Scholar 

  3. S.M. Mahdi, M.A. Habeeb, Low-cost piezoelectric sensors and gamma ray attenuation fabricated from novel polymeric nanocomposites. AIMS Mater. Sci. 10(2), 288–300 (2023). https://doi.org/10.3934/matersci.2023015

    Article  CAS  Google Scholar 

  4. S. Mallakpour, H.Y. Nazari, The influence of bovine serum albumin-modified silica on the physicochemical properties of poly(vinyl alcohol) nanocomposites synthesized by ultrasonication technique. Ultrason. Sonochem. 41, 1–10 (2018). https://doi.org/10.1016/j.ultsonch.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  5. O.G. Abdullah, S.B. Aziz, K.M. Omer, Y.M. Salih, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci.: Mater. Electron. 26, 5303–5309 (2015). https://doi.org/10.1007/s10854-015-3067-3

    Article  CAS  Google Scholar 

  6. N. Hayder, M.A. Habeeb, A. Hashim, Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites. Egypt. J. Chem. 63, 577–592 (2020). https://doi.org/10.21608/ejchem.2019.14646.1887

    Article  Google Scholar 

  7. Q.M. Jebur, A. Hashim, M.A. Habeeb, Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices. Egypt. J. Chem. 63, 719–734 (2020). https://doi.org/10.21608/ejchem.2019.14847.1900

    Article  Google Scholar 

  8. M.B. Mohamed, M.H. Abdel-Kader, Effect of excess oxygen content within different nano-oxide additives on the structural and optical properties of PVA/PEG blend. Appl. Phys. A 125(3), 1–11 (2019)

    Article  Google Scholar 

  9. M.A. Habeeb, A. Hashim, N. Hayder, Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric and fluorescence properties for IR sensors. Egypt. J. Chem. 63, 709–717 (2020). https://doi.org/10.21608/ejchem.2019.13333.1832

    Article  Google Scholar 

  10. Z. Ping, Q.T. Nguyen, A.Essamri,and, J.N. el, Polym. Adv. Technol. " Macromol. Chem. Phys. No. 195, 21–31 (1994)

    Google Scholar 

  11. K. Sreekanth, T. Siddaiah, N.O. Gopal, Y. Madhava Kumar, Ramu Optical and electrical conductivity studies of VO2+ doped polyvinyl pyrrolidone (PVP) polymer electrolytes. J. Science: Adv. Mater. Devices ISBN 4, 230–236 (2019)

    Google Scholar 

  12. M.A. Habeeb, W.S. Mahdi, Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application. Int. J. Emerg. Trends Eng. Res. 7(9), 247–255 (2019). https://doi.org/10.30534/ijeter/2019/06792019

    Article  Google Scholar 

  13. L.H. Gaabour, Influence of silica nanoparticles incorporated with chitosan/polyacrylamide polymer nanocomposites. J. Mater. Res. Technol. 8(2), 2157–2163 (2019)

    Article  CAS  Google Scholar 

  14. M.A. Habeeb, A. Hashim, N. Hayder, Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egypt. J. Chem. 63, 697–708 (2020). https://doi.org/10.21608/ejchem.2019.12439.1774

    Article  Google Scholar 

  15. M.A. Habeeb, Effect of rate of deposition on the optical parameters of GaAs films. Eur. J. Sci. Res. 57(3), 478–484 (2011)

    Google Scholar 

  16. M.A. Habeeb, Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites. J. Eng. Appl. Sci. 9(4), 102–108 (2014). https://doi.org/10.36478/jeasci.2014.102.108

    Article  Google Scholar 

  17. T. Soliman, S. Vshivkov, Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J. Non-cryst. Solids. 519, 119452 (2019)

    Article  CAS  Google Scholar 

  18. M.S. Micozzi, F.M. Townsend, C.E. Koop, From Army Medical Museum to national museum of health and medicine. A century-old institution on the move. Arch. Pathol. Lab. Med. 114(12), 1290–1295 (1990)

    CAS  PubMed  Google Scholar 

  19. S.M. Mahdi, M.A. Habeeb, Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites for optoelectronics and antibacterial applications. Opt. Quant. Electron. 54, 854 (2022). https://doi.org/10.1007/s11082-022-04267-6

    Article  CAS  Google Scholar 

  20. J. Tauc, A. Menth, D.L. Wood, Optical and magnetic investigations of the localized states in semiconducting glasses. Phys. Rev. Lett. 25(11), 749–758 (1970)

    Article  CAS  Google Scholar 

  21. A. Alshehari, E. Salim, A. Oraby, Structural, optical, morphological and mechanical studies of polyethylene oxide/sodium alginate blend containing multi-walled carbon nanotubes. J. Mater. Res. Technol. 15, 5615–5622 (2021)

    Article  CAS  Google Scholar 

  22. S.S. Manhas, P. Rehan, A. Kaur, A.D. Acharya, B. Sarwan, Evaluation of optical properties of polypyrrole: Polystyrene nanocomposites. AIP Conf. Proc. 2100(4), 1–5 (2019). https://doi.org/10.1063/1.5098591

    Article  CAS  Google Scholar 

  23. K.L. Chopra, P.D. Paulson, V. Dutta, Thin film solar cells: an overview. Prog Photovolt. Res Appl. 12(2), 69–92 (2004)

    Article  CAS  Google Scholar 

  24. M.A. Habeeb, Z.S. Jaber, W.H. Radi, Synthesis and characterization of (PVA-CoO-ZrO2) nanostructures for Nanooptoelectronic Fields. East Eur. J. Phys. 2, 228–233 (2023). https://doi.org/10.26565/2312-4334-2023-2-25

    Article  Google Scholar 

  25. S. Kramadhati, K. Thyagarajan, Optical properties of pure and doped (KnO3 & MgCl2) polyvinyl alcohol polymer thin films. Int. J. Thin Film Sci. Technol. 6(8), 15–18 (2013)

    Google Scholar 

  26. N.K. Al–Sharifi, M.A. Habeeb, Improvement structural and dielectric properties of PS/SiC/Sb2O3 nanostructures for nanoelectronics devices. East Eur. J. Phys. 2, 341–347 (2023). https://doi.org/10.26565/2312-4334-2023-2-40

  27. S.M. Mahdi, M.A. Habeeb, Fabrication and tailored structural and dielectric characteristics of (SrTiO3/ NiO) nanostructure Doped (PEO/PVA) polymeric blend for Electronics Fields. Phys. Chem. Solid State. 23(4), 785–792 (2022). https://doi.org/10.15330/pcss.23.4.785-792

    Article  CAS  Google Scholar 

  28. Y. Wang, S. Dong, X. Li, C. Hong, X. Zhang, Synthesis, properties, and multifarious applications of SiC nanoparticles. Rev. Ceram. Int. 48(7), 8882–8913 (2022)

    Article  CAS  Google Scholar 

  29. A. Hashim, M.A. Habeeb, Q.M. Jebur, Structural, dielectric and optical properties for (polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites. Egypt. J. Chem. 63, 735–749 (2020). https://doi.org/10.21608/ejchem.2019.14849.1901

    Article  Google Scholar 

  30. M.A. Habeeb, W.K. Kadhim, Study the optical properties of (PVA-PVAC-Ti) nanocomposites. J. Eng. Appl. Sci. 9(4), 109–113 (2014). https://doi.org/10.36478/jeasci.2014.109.113

    Article  Google Scholar 

  31. M.A. Habeeb, Z.S. Jaber, Enhancement of structural and optical properties of CMC/PAA blend by addition of zirconium carbide nanoparticles for optics and photonics applications. East Eur. J. Phys. 4, 176–182 (2022). https://doi.org/10.26565/2312-4334-2022-4-18

    Article  Google Scholar 

  32. A.H. Hadi, M.A. Habeeb, Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends. J. Mech. Eng. Res. Dev. 44(3), 265–274 (2021)

    Google Scholar 

  33. A. Shubha, S.R. Manohara, L. Gerward, Influence of polyvinyl pyrrolidone on optical, electrical, and dielectric properties of poly (2-ethyl-2-oxazoline)-polyvinyl pyrrolidone blends. J. Mol. Liq. 247, 328–336 (2017)

    Article  CAS  Google Scholar 

  34. S.M. Mahdi, M.A. Habeeb, Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric nanocomposites for optical and biological applications. Polym. Bull. (2023). https://doi.org/10.1007/s00289-023-04676-x

    Article  Google Scholar 

  35. K.M.K. Sudha, K.H.G. Harish, R. Chandramani, M.C. Radhakrishna, PVP influence on PVA crystallinity and optical band gap. Arch. Phy Res. 6, 18–21 (2015)

    Google Scholar 

  36. M.H. Dwech, M.A. Habeeb, A.H. Mohammed, Fabrication and evaluation of optical characteristics of (PVA-MnO2–ZrO2) nanocomposites for Nanodevices in Optics and Photonics. Ukr. J. Phys. 67(10), 757–762 (2022). https://doi.org/10.15407/ujpe67.10.757

    Article  Google Scholar 

  37. S.H. Yu, M. Yoshimura, J.M.C. Moreno, T. Fujiwara, T. Fujino, R. Teranishi, In situ fabrication and optical properties of a novel polystyrene/semiconductor nanocomposite embedded with CdS nanowires by a soft solution processing route. Langmuir. 17(5), 1700–1707 (2001). https://doi.org/10.1021/la000941p

    Article  CAS  Google Scholar 

  38. N.K. Al–Sharifi, M.A. Habeeb, Synthesis and exploring structural and optical properties of Ternary PS/SiC/Sb2O3 nanocomposites for optoelectronic and antimicrobial applications. Silicon. 15, 4979–4989 (2023)

  39. A.A. Mohammed, M.A. Habeeb, Modification and development of the structural, optical and antibacterial characteristics of PMMA/Si3N4/TaC nanostructures. Silicon 15, 5163–5174 (2023). https://doi.org/10.1007/s12633-023-02426-2

    Article  CAS  Google Scholar 

  40. R.S. Abdul Hamza, M.A. Habeeb, Synthesis and tuning the structural, morphological and dielectric characteristics of PVA-CMC-SiO2–Cr2O3 hybrid nanostructures for nanoelectronics devices. Opt. Quant. Electron. 55(8), 705 (2023)

  41. K. Rajesh, V. Crasta, N. Rithin Kumar, G. Shetty, P. Rekha, Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. J. Polym. Res. 26(4), 1–10 (2019)

    Article  CAS  Google Scholar 

  42. U. Kumar, D. Padalia, L. Lendvai, P. Bhandari, P.K.L. Ranakoti, Fabrication of europium-doped barium titanate/polystyrene polymer nanocomposites using ultrasonication-assisted method: Structural and optical properties. Polym (Basel). 14(21), 4664 (2022). https://doi.org/10.3390/polym14214664

  43. M.A. Habeeb, R.S. Abdul Hamza, Novel of (biopolymer blend-MgO) nanocomposites: fabrication and characterization for humidity sensors. J. Bionanosci. 12, 328–335 (2018). https://doi.org/10.1166/jbns.2018.1535

    Article  CAS  Google Scholar 

  44. M.A. Habeeb, R.S.A. Hamza, Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for piezoelectric application. Indonesian J. Electr. Eng. Inf. 6(4), 428–435 (2018). https://doi.org/10.11591/ijeei.v6i1.511

    Article  Google Scholar 

  45. G.D. Liang, S.C. Tjong, Electrical properties of percolative polystyrene/carbon nanofiber composites. IEEE Trans. Dielectr. Electr. Insul. 15(1), 214–220 (2008)

    Article  CAS  Google Scholar 

  46. S.M. Mahdi, M. A. Habeeb, Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices. Digest J. Nanomater. Biostr. 17(3), 941–948 (2022). https://doi.org/10.15251/DJNB.2022.173.941

  47. M.A. Habeeb, A.H. Mohammed, Fabrication and tailored optical and electrical characteristics of Co2O3/SiC nanostructures doped PVA for multifunctional technological applications. Opt. Quant. Electron. 55, 791 (2023). https://doi.org/10.1007/s11082-023-05061-8

    Article  CAS  Google Scholar 

  48. K.M. Vidyalaya, Analysis of electrical properties of Li3+ ion beam irradiated lexan polycarbonate also act as catalyst to speed up the discoloration. The Formation of Conjugated 21(10), 43–46 (2009)

    Google Scholar 

  49. M.A. Habeeb, W.H. Rahdi, Titanium carbide nanoparticles filled PVA–PAAm nanocomposites, structural and electrical characteristics for application in energy storage. Opt. Quant. Electron. 55, 334 (2023). https://doi.org/10.1007/s11082-023-04639-6

    Article  CAS  Google Scholar 

  50. A.A. Mohammed, M.A. Habeeb, Effect of Si3N4/TaC nanomaterials on the structural and electrical characteristics of poly methyl methacrylate for electrical and electronics applications. East Eur. J. Phys. 2, 157–164 (2023). https://doi.org/10.26565/2312-4334-2023-2-15

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MAH and WKK. The first draft of the manuscript was written by Majeed Ali Habeeb and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majeed Ali Habeeb.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethics Approval

The Research is not involving the studies on human or their data.

Consent to Participate

Consent.

Consent for Publication

Consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habeeb, M.A., Kadhim, W.K. Synthesis and Tuning the Structural, Optical and Electrical Behavior of PVA-SiC-BaTiO3 Polymer Nanostructures for Photonics and Electronics Nanodevices. J Inorg Organomet Polym 34, 1403–1416 (2024). https://doi.org/10.1007/s10904-023-02900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02900-9

Keywords

Navigation