Skip to main content
Log in

Manganese and Magnesium Co-doped Barium Titanate: A Route Towards Enhanced Energy Storage Performance via Defect Dipoles Engineering

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Developing novel ferroelectrics using lead-free ceramics for cutting-edge electrical and energy storage devices is vital given the global atmospheric pollution and the energy crisis due to such ceramics’ high power density and good stability. Unfortunately, the majority have weak breakdown energies and a slight variation between maximum and remaining polarization, which leads to low energy density and efficiency. Complex defect dipoles between oxygen vacancies and acceptor co-doped ions have been used to overcome this issue. By doing this, BaTiO3-based ceramics can more efficiently and densely store energy. Mg and Mn acceptor co-doping ions on the Ti site create (\({\text{M}\text{g}}_{\text{T}\text{i}}^{{\prime }{\prime }}-{\text{V}}_{\text{O}}^{\bullet \bullet }\) and \({\text{M}\text{n}}_{\text{T}\text{i}}^{{\prime }{\prime }}-{\text{V}}_{\text{O}}^{\bullet \bullet }\)) defect dipoles in the BaTiO3 host matrix. This increases breakdown strength to 175 kV/cm, providing a high difference between saturation and remaining polarization. This increased energy storage density (from 0.596 to 1.784 J/cm3) and efficiency (42–92%). Furthermore, the energy storage density is stable throughout operating frequencies and temperatures. The results indicate that defect dipole engineering can be considered a promising technique to improve the energy storage performance of lead-free ferroelectric ceramics potentially.

Graphical Abstract

The energy-storing capacities of BMMTx ceramics were attained by practical synthesis using acceptor ion co-doping, leading to short grain sizes and defect dipoles within the material structure. A high co-doping concentration produced a compact microstructure with a grain size of 0.459 µm. This microstructure improvement significantly increased the material's breakdown strengths, reaching a phenomenal Eb=175 kV/cm. Defect dipoles also helped to refine the hysteresis loop, which increased the difference between residual and spontaneous polarization. This process led to an extraordinary energy storage efficiency of 92% at 175 kV/cm and a phenomenal energy storage density, designated as Wrec, of 1.78 J/cm3. Thanks to these outstanding qualities, it surpasses earlier studies on lead-free alternatives, placing it as a top competitor among ecologically aware ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data supporting this study’s findings are included in the article.

References

  1. W.J. Sarjeant, J. Zirnheld, F.W. Macdougall, Capacitors, IEEE Trans. Plasma Sci. 26(5), 1368–1392 (1998)

    Article  CAS  Google Scholar 

  2. H. Qi, A. Xie, A. Tian, R. Zuo, Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv. Energy Mater. 1903338, 1–8 (2019)

    Google Scholar 

  3. Q. Tan, P. Irwin, Y. Cao, Advanced dielectrics for capacitors. IEEJ Trans. Fundam Mater. 126, 1153–1159 (2006)

    Article  Google Scholar 

  4. S. Liu, J. Wang, J. Ding, H. Hao, L. Zhao, S. Xia, Crystallization, microstructure, and dielectric properties of the SrO-BaO-Nb2O5-Al2O3-SiO2 based glass ceramics added with ZrO2. Ceram. Int. 45, 4003–4008 (2019)

    Article  CAS  Google Scholar 

  5. H. Li, Y. Zhou, Y. Liu, L. Li, Y. Liu, Q. Wang, Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50(11), 6369–6400 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, Zhai Achieving high discharge energy density and efficiency with NBT-based ceramics for capacitor application. J. Mater. Chem. C 7, 4072–4078 (2019)

    Article  CAS  Google Scholar 

  7. J. Xie, H. Liu, Z. Yao, H. Hao, Y. Xie, Z. Li, M. Cao, Zhang Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors: via amorphous-structure engineering. J. Mater. Chem. C 7, 13632–13639 (2019)

    Article  CAS  Google Scholar 

  8. M.S. Alkathy et al., Achieving high energy storage density simultaneously with significant efficiency and excellent thermal stability by defect dipole and microstructural engineering in modified BaTiO3 ceramics. J. Alloys Compd. 934, 167887 (2023)

    Article  CAS  Google Scholar 

  9. M.S. Alkathy et al., The enhanced energy-storage density of BaTi0.95Zr0.05O3 via generation of defect dipoles upon lithium doping. Mater. Chem. Phys. 294, 127032 (2023)

    Article  CAS  Google Scholar 

  10. J. Wenfeng Liu, Y. Gao, Zhao, Shengtao Li Significant enhancement of energy storage properties of BaTiO3-based ceramics by hybrid-doping. J. Alloys Compd. 843, 155938 (2020)

    Article  Google Scholar 

  11. K. Carl, K.H. Hardtl, Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics. 17, 473–486 (1977)

    Article  Google Scholar 

  12. X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. W. Cao, W. Li, Y. Feng, T. Bai, Y. Qiao, Y. Hou, T. Zhang, Y. Yu, Fei Defect dipole induced considerable recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Appl. Phys. Lett. 108, 202902 (2016)

    Article  Google Scholar 

  14. X. Letao Yang, F. Kong, H. Li, Z. Hao, H. Cheng, J.-F. Liu, Li, Shujun Zhang Perovskite lead-free dielectrics for energy storage applications. Prog Mater. Sci. 102, 72–108 (2019)

    Article  Google Scholar 

  15. Y. Kailun Zou, H. Dan, Q. Xu, Y. Zhang, H. Lu, Huang, Yunbin he recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)

    Article  Google Scholar 

  16. T. Zhen Liu, J. Lu, G. Ye, X. Wang, Dong, Ray Withers, Yun Liu Antiferroelectrics for energy storage applications: a review. Adv. Mater. Technol. 3(9), 1800111 (2018)

    Article  Google Scholar 

  17. X. Bingcheng Luo, E. Wang, H. Tian, H. Song, Wang, Longtu Li enhanced energy-storage density and high efficiency of lead-free CaTiO3–BiScO3 linear dielectric ceramics. ACS Appl. Mater. Interfaces. 9(23), 19963–19972 (2017)

    Article  PubMed  Google Scholar 

  18. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Zhang A dielectric polymer with high electric energy density and fast discharge speed. Science. 313, 334–336 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. X..H.. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3, 1330001 (2013)

    Article  Google Scholar 

  20. M.S. Alkathy, F.L. Zabotto, F.P. Milton et al., Achieving high energy storage performance and breakdown strength in modified strontium titanate ceramics. J. Mater. Sci: Mater. Electron. 33, 15483–15494 (2022)

    CAS  Google Scholar 

  21. Y. Guiwei, L. Xu, B. Fang, S. Zhang, X. Lu, X. Zhao, J. Ding, Achieving high pulse charge-discharge energy storage properties and temperature stability of (Ba0.98–xLi0.02Lax)(Mg0.04Ti0.96)O3 lead-free ceramics via bandgap and defect engineering. Chem. Eng. J. 450(1), 137814 (2022)

    Google Scholar 

  22. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, S. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  23. C. Seungho Cho, Y.S. Yun, H. Kim, J. Wang, W. Jian, J. Zhang, X. Huang, H. Wang, J.L. Wang, MacManus-Driscoll, strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy. 45, 398–406 (2018)

    Article  Google Scholar 

  24. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)

    Article  CAS  Google Scholar 

  25. H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y.J. Zhang, L. Li, Y. Shen, Y.H. Lin, C.W. Nan, Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1813 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  26. B. Peng, Q. Zhang, X. Li, T. Sun, F. Huiqing, S. Ke, M. Ye et al., Giant electric energy density in epitaxial lead-free thin films with the coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015)

    Article  Google Scholar 

  27. H. Pan, S. Lan, S. Xu, Q. Zhang, H. Yao, Y. Liu, F. Meng, E.J. Guo, L. Gu, D. Yi, X. Renshaw, Wang, Ultrah. Energy Storage Super Paraelectric Relaxor Ferroelectr. Sci. 374(6563), 100–104 (2021)

    CAS  Google Scholar 

  28. H. Pan, A. Kursumovic, Y.-H. Lin, C.-W. Nan, MacManus-Driscoll, dielectric films for high-performance capacitive energy storage: multiscale engineering. Nanoscale. 12, 19582–19591 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. H. Xi Dong, M. Chen, K. Wei, J. Wu, Zhang, Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4. J. Alloy Compd. 744, 721–727 (2018)

    Article  Google Scholar 

  30. Q. Shujuan Liu, L. Xie, Y. Zhang, X. Zhao, P. Wang, J. Mao, X. Wang, Lou, Tunable electrocaloric and energy storage behavior in the ce, Mn hybrid doped BaTiO3 ceramics. J. Eur. Ceram. Soc. 38(4), 4664–4669 (2018)

    Google Scholar 

  31. G.W. Yan, M.G. Ma, C.B. Li, Z.W. Li, X.Y. Zhong, J. Yang, F. Wu, Z.H. Chen, Enhanced energy storage property and dielectric breakdown strength in Li + doped BaTiO3 ceramics. J. Alloy Compd. 857, 158021 (2021)

    Article  CAS  Google Scholar 

  32. J. Wenfeng Liu, Y. Gao, S. Zhao, Li, Significant enhancement of energy storage properties of BaTiO3-based ceramics by hybrid-doping. J. Alloy Compd. 843, 155938 (2020)

    Article  Google Scholar 

  33. G. Liu, L. Zhang, Q. Wu, Z. Wang, Y. Li, D. Li, H. Liu, Y. Yan, Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics. J. Mater. Sci: Mater. Electron. 29(21), 18859–18867 (2018)

    CAS  Google Scholar 

  34. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528–8537 (2018)

    Article  CAS  Google Scholar 

  35. D. Meng, Q. Feng, M. Wang, N.N. Luo, X.Y. Chen, X. Liu, C.L. Yuan, Y.Z. Wei, T. Fujita, H. You, Realising high comprehensive energy storage performance of BaTiO3-based perovskite ceramics via La(Zn1/2Hf1/2)O3 modification. Ceram. Int. 48, 16173–16182 (2022)

    Article  CAS  Google Scholar 

  36. H. Palneedi, M. Peddigari, G.-T. Hwang, Dae‐Yong Jeong, and Jungho Ryu. High‐performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28(42), 1803665 (2018)

    Article  Google Scholar 

  37. Q. Huang, F. Si, B. Tang, The effect of rare-earth oxides on the energy storage performances in BaTiO3 based ceramics. Ceram. Int. 48(12), 17359–17368 (2022)

    Article  CAS  Google Scholar 

  38. Y. Ning, Y. Pu, Q. Zhang, S. Zhou, C. Wu, L. Zhang, Zixiong Sun, Achieving high energy storage properties in perovskite oxide via high-entropy design. Ceram. Int. 49(8), 12214–12223 (2023)

    Article  CAS  Google Scholar 

  39. P. Zhao, H. Wang, L. Wu, L. Chen, Z. Cai, L. Li, X. Wang, High-performance relaxor ferroelectric materials for energy storage applications. Adv. Energy Mater. 9(17), 1803048 (2019)

    Article  Google Scholar 

  40. D. Li, D. Zhou, D. Wang, W. Zhao, Y. Guo, Z. Shi, Improved energy storage properties achieved in (K, na)NbO3–based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 32(15), 2111776 (2022)

    Article  CAS  Google Scholar 

  41. S. Ji, Q. Li, D. Wang, J. Zhu, M. Zeng, Z. Hou, Enhanced energy storage performance and thermal stability in relaxor ferroelectric (1-x)BiFeO3‐x(0.85BaTiO3‐0.15Bi(Sn0.5Zn0.5)O3) ceramics. J. Am. Ceram. Soc. 104(6), 2646–2654 (2021)

    Article  CAS  Google Scholar 

  42. J. Guo, W. Xiao, X. Zhang, J. Zhang, J. Wang, G. Zhang, S.T. Zhang, Achieving excellent energy storage properties in fine-grain High‐Entropy relaxor ferroelectric ceramics. Adv. Electron. Mater. 8(11), 2200503 (2022)

    Article  CAS  Google Scholar 

  43. C.Y. Wang, C. Liang, W.J. Cao, H.Y. Zhao, Wang. Boosting energy-storage efficiency and thermal stability via defect dipoles in BaTiO3-based lead-free ceramics. Ceram. Int. 49(9), 13330–13338 (2023)

    Article  CAS  Google Scholar 

  44. Y. Zhang, A. Li, G. Zhang, Y. Zheng, A. Zheng, G. Luo, R. Tu, Y. Sun, J. Zhang, Q. Shen, Optimization of energy storage properties in lead-free barium titanate-based ceramics via B-site defect dipole engineering. ACS Sustain. Chem. Eng. 10(9), 2930–2937 (2022)

    Article  CAS  Google Scholar 

  45. P. Peng, H. Nie, C. Zheng, G. Wang, X. Dong, High-energy storage density in NaNbO3‐modified (Bi0.5Na0.5)TiO3‐BiAlO3‐based lead‐free ceramics under low electric field. J. Am. Ceram. Soc. 104(6), 2610–2620 (2021)

    Article  CAS  Google Scholar 

  46. Y. Shen, L. Wu, J. Zhao, J. Liu, L. Tang, X. Chen, H. Li et al., Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering. J. Chem. Eng. 439, 135762 (2022)

    Article  CAS  Google Scholar 

  47. L. Liu, B. Chu, P. Li, P. Fu, J. Du, J. Hao, W. Li, H. Zeng, Achieving high energy storage performance and ultrafast discharge speed in SrTiO3-based ceramics via a synergistic effect of chemical modification and defect chemistry. J. Chem. Eng. 429, 132548 (2022)

    Article  CAS  Google Scholar 

  48. M.H. Zhang, H. Ding, S. Egert et al., Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states. Nat. Commun. 14, 1525 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Huang, B. Hui, X.Q. Liu, J. Liu, Li, W. Yong Jun, Defect dipoles induced high-energy storage density in Mn‐doped BST ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 102(4), 1904–1911 (2019)

    Article  CAS  Google Scholar 

  50. W.-B. Li, Di Zhou, P. Li-Xia, Enhanced energy storage density by inducing defect dipoles in lead-free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett. 110(13), 132902 (2017)

    Article  Google Scholar 

  51. M.-J. Wang, H. Yang, Q.-L. Zhang, Z.-S. Lin, Z.-S. Zhang, Dan Yu, Liang Hu microstructure and dielectric properties of BaTiO3 ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application. Mater. Res. Bull. 60, 485–491 (2014)

    Article  CAS  Google Scholar 

  52. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  53. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58(10), 883–891 (2007)

    Article  CAS  Google Scholar 

  54. J. Kreisel, A.M. Glazer, G. Jones, P.A. Thomas, L. Abello, An x-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 solid solution. Condens. Matter Phys. 12(14), 3267 (2000)

    Article  CAS  Google Scholar 

  55. A. Raeliarijaona, H. Fu, Mode sequence, the frequency change of non-soft phonons, and LO-TO splitting in strained tetragonal BaTiO3. Phys. Rev. B 92(9), 094303 (2015)

    Article  Google Scholar 

  56. K. Dey, A. Ahad, K. Gautam, A. Tripathy, S.S. Majid, S. Francoual, C. Richter et al., Coexistence of local structural heterogeneities and long-range ferroelectricity in Pb-free (1–x)ba(Zr0.2Ti0.8)O3 – x(Ba0.7Ca0.3)TiO3 ceramics. Phys. Rev. B 103, 100205 (2021)

    Article  Google Scholar 

  57. Z. Raddaoui, B. Smiri, A. Maaoui, J. Dhahri, R.M. Ghaieth, N. Abdelmoula, Khiroun correlation of crystal structure and optical properties of Ba0.97Nd0.0267Ti(1-x)WxO3 perovskite. RSC Adv. 8, 27870 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. T. Mondal, S. Das, T. Badapanda, T.P. Sinha, Sarun Effect of Ca2 + substitution on impedance and electrical conduction mechanism of Ba1-xCaxZr0.1Ti0.9O3 (0.00 ≤ x ≤ 0.20) ceramics. Phys. B 508, 124–135 (2017)

    Article  CAS  Google Scholar 

  59. V.S.K.U.R. Reddy, N. Lakshmi, Study of (1 – x)BaTiO3–xNi0.5Zn0.5Fe2O4 (x = 5, 10 and 15%) magneto-electric ceramic composites. J. Asian Ceram. Soc. 1(4), 346–350 (2013)

    Article  Google Scholar 

  60. U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, In situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 91, 062908 (2007)

    Article  Google Scholar 

  61. F. Boujelben, H. Khemakhem, Simon Effect of Mn and Nb Doped BaTiO3 in the ba(Mn1/2Nb1/2) dielectric properties xTi1-xO3. J. Electron. Mater. 41, 2250–2255 (2012)

    Article  CAS  Google Scholar 

  62. P.T.M. Nguyen, M.D. Tai Nguyen, Nguyen, Thu-Hien Vu, Impact of electrode materials on microstructure, leakage current and dielectric tunable properties of lead-free BSZT thin films. Ceram. Int. 47(16), 23214–23221 (2021)

    Article  CAS  Google Scholar 

  63. C.A. Randall, Z. Fan, I. Reaney, L.-Q. Chen, Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, side effects, and applications. J. Am. Ceram. Soc. 104(8), 3775–3810 (2021)

    Article  CAS  Google Scholar 

  64. A. Mesquita, Maria Inês Basso Bernardi, Claude Godart, Paulo Sergio Pizani, Alain Michalowicz, and Valmor Roberto Mastelaro. Grain size effect on the structural and dielectric properties of Pb0. 85La0. 15TiO3 ferroelectric ceramic compound. Ceram. Int. 38(7), 5879–5887 (2012)

    Article  CAS  Google Scholar 

  65. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics. 44(1), 55–61 (1982)

    Article  CAS  Google Scholar 

  66. Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, Régnault von Der Mühll, and Lahcen Bih. Effects of substituting titanium by iron and niobium on the structure and dielectric properties in BaTi1 – x(Fe0.5Nb0.5)xO3 solid solution. J. Alloy Compd. 427, 260–266 (2007)

    Article  CAS  Google Scholar 

  67. Z. Wang, L.L. Zhang, Y. Ping, Ba0.4Sr0.6(Fe0.5Nb0.5)O3 ceramics with extended giant dielectric constant step and reduced dielectric loss. J. Alloy Compd. 586, 420–425 (2014)

    Article  CAS  Google Scholar 

  68. S. Cha, Ho, Y. Ho, Han, Effects of Mn doping on dielectric properties of Mg-doped BaTiO3, J. Appl. Phys. 100(10) (2006)

  69. D. Smyth, Morgan. Barium titanate, The defect chemistry of metal oxides. 2000

  70. K.C. Kao, Dielectric Phenomena in Solid Elsevier Academic, San Diego, 2004

  71. I. Coondoo, N. Panwar, Jha Effect of sintering temperature on the structural, dielectric and ferroelectric properties of tungsten substituted SBT ceramics. Phys. B Condens. Matter. 406(3), 374–381 (2011)

    Article  CAS  Google Scholar 

  72. C. Zhu, Z. Cai, L. Li, X. Wang, High energy density, high efficiency, and excellent temperature stability of lead-free Mn–doped BaTiO3–Bi (Mg1/2Zr1/2)O3 ceramics sintered in a reducing atmosphere. J. Alloy Compd. 816, 152498 (2020)

    Article  CAS  Google Scholar 

  73. Z. Chen, X. Bai, H. Wang, J. Du, W. Bai, L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Zhang Achieving high-energy storage performance in 0.67Bi1 – xSmxFeO3-0.33BaTiO3 lead-free relaxor ferroelectric ceramics. Ceram. Int. 46, 11549–11555 (2020)

    Article  CAS  Google Scholar 

  74. Z. Chen, X. Bu, B. Ruan, J. Du, P. Zheng, L. Li, F. Wen, W. Bai, W. Wu, L. Zheng, Zhang simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 40(15), 5450–5457 (2020)

    Article  CAS  Google Scholar 

  75. H. Yang, H. Qi, R. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3 based ternary lead-free relaxor ferroelectric ceramic. J. Eur. Ceram. Soc. 39(8), 2673–2679 (2019)

    Article  CAS  Google Scholar 

  76. N. Liu, R. Liang, Z. Zhou et al., Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J. Mater. Chem. C 6(38), 10211–10217 (2018)

    Article  CAS  Google Scholar 

  77. M. Tang, L. Yu, Y. Wang, J. Lv, J. Dong, B. Guo, F. Chen, Q. Ai, Y. Luo, Q. Li, K. Yu, F. Wu, Liu Dielectric, ferroelectric, and energy storage properties of ba(Zn1/3Nb2/3) O3-modified BiFeO3–BaTiO3 Pb-Free relaxor ferroelectric ceramics. Ceram. Int. 47(3), 3780–3788 (2021)

    Article  CAS  Google Scholar 

  78. G. Liu, M. Tang, X. Hou, B. Guo, J. Lv, J. Dong, Y. Wang, Q. Li, K. Yu, Y. Yan, Jin Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a dense polymer process. Chem. Eng. J. 412, 127555 (2021)

    Article  CAS  Google Scholar 

  79. Z. Dai, D. Li, Z. Zhou, S. Zhou, W. Liu, J. Liu, X. Wang, Ren a strategy for high energy storage and transparency performance in KNN-based ferroelectric ceramics. Chem. Eng. J. 427, 131959 (2022)

    Article  CAS  Google Scholar 

  80. Y. Zhang, G. Zhang, A. Li, Z. Wang, Y. Zheng, G. Luo, R. Tu, J. Zhang, Qiang Shen, and Lianmeng Zhang. Improved energy storage performance of lead-free BaTi0.96Li0.04O2.94 ceramics via domain structure engineering. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.06.073

    Article  Google Scholar 

  81. Z. Dai, J. Xie, Z. Chen, S. Zhou, J. Liu, W. Liu, Z. Xi, Ren Improved energy storage density and efficiency of (1–x)Ba0.85Ca0.15Zr0.1Ti0.9O3-xBiMg2/3Nb1/3O3 lead-free ceramics. Chem. Eng. J. 410, 128341 (2021)

    Article  CAS  Google Scholar 

  82. K. Tian Wei, P. Liu, F.D. Lu, B. Ye, C. Zhou, H. Yang et al., Novel NaNbO3–Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties. Ceram. Int. 47(3), 3713–3719 (2021)

    Article  Google Scholar 

  83. Z.-H. Zhao, Y. Dai, Feng Huang the formation and effect of defect dipoles in lead-free piezoelectric ceramics: a review. Sustain-Mater Technol. 20, e00092 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Sao Paulo Research Foundation (FAPESP: Grant Nos. 2017/13769-1 and 2023/05716-6) for financial support. Dr. Mansour is grateful to the Researchers Supporting Project number (RSP2023R393) at King Saud University in Riyadh, Saudi Arabia, for his financial support.

Funding

This work was supported by  Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: Grant no# 2017/13769-1), (FAPESP: Grant No. 2023/05716-6), and King Saud University, Researchers Supporting Project number (RSP2023R393).

Author information

Authors and Affiliations

Authors

Contributions

MA: Conceptualization, Methodology, Formal analysis, software, writing, and original drift preparation. SP: Methodology and formal analysis, and original drift preparation. MG: Investigation. FLZ: Investigation. JAE: Writing, validation, review, supervision, and approval of the final version.

Corresponding authors

Correspondence to Mahmoud S. Alkathy or Jose A. Eiras.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Pattipaka, S., Gatasheh, M.K. et al. Manganese and Magnesium Co-doped Barium Titanate: A Route Towards Enhanced Energy Storage Performance via Defect Dipoles Engineering. J Inorg Organomet Polym 34, 1193–1207 (2024). https://doi.org/10.1007/s10904-023-02891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02891-7

Keywords

Navigation