Skip to main content
Log in

Composition-driven (barium titanate based ceramics) pseudo-binary system for energy storage applications through ferroelectric studies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A composition-dependent structural, microstructure, ferroelectric, and energy storage performance of novel barium-based (1 − x)Ba(Zr0.1Ti0.9)O3 − x(Ba0.85Ca0.15)TiO3[(1 − x)BZT − xBCT] pseudo-binary systems with x = 0.0, 0.3, 0.5, 0.7 and 1 are investigated systematically. The barium zirconate titanate, BZT (x = 0.0), and barium calcium titanate, BCT (x = 1) ceramics exhibited a single-phase rhombohedral (R) and tetragonal (T) perovskite structure, respectively. The derivative of [(1 − x)BZT − xBCT] compositions with x = 0.3 enters into the orthorhombic phase (O), and the other two compositions with x = 0.5 and 0.7 compositions enter into the tetragonal phase. The surface morphologies reveal dense, uniform grain size varies from 2.59–12.05 μm with the addition of BCT to the BZT matrix. The presence of all the elements is confirmed using EDX analysis, and the existence of both Ti4+ and Ti3+ valence states in the Ti core level found in the sample. The maximum polarization is 15.06 μC/cm2 achieved for the x = 0.3 sample at 15.50 kV/cm applied field. The recoverable energy density (Wrec) and energy efficiency (η) are estimated to be nearly 167 mJ/cm3 and 42%, respectively. These outstanding characteristics of [(1 − x)BZT − xBCT] ceramics are ascribed to polymorphic phase boundaries, demonstrating their superior ferroelectric and optical properties. The present study may pave a new path in designing dielectric ceramics through intermixing MPBs for energy storage and multifunctional electro-optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Nano Energy 67, 104264 (2020)

    Google Scholar 

  2. R. Verma, A. Chauhan, K.M. Batoo, M. Hadi, E.H. Raslan, R. Kumar, M.F. Ijaz, A.K. Assaifan, J. Alloys Compd. 869, 159520 (2021)

    Google Scholar 

  3. Q. Yuan, G. Li, F. Yao, S. Cheng, Y. Wang, R. Ma, Nano Energy 52, 203 (2018)

    Google Scholar 

  4. S. Priya Balmuchu, S.R.N.K. Mangalampalli, P. Dobbidi, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 282, 115791 (2022)

    Google Scholar 

  5. S.P. Balmuchu, P. Dobbidi, J. Mater. Sci. Mater. Electron. 32, 9623 (2021)

    Google Scholar 

  6. S. Verma, P. Mahajan, B. Padha, A. Ahmed, S. Arya, Electrochim. Acta. Acta 465, 142933 (2023)

    Google Scholar 

  7. A. Ahmed, S. Verma, P. Mahajan, A.K. Sundramoorthy, S. Arya, Sci. Rep. 13, 12146 (2023)

    ADS  Google Scholar 

  8. N. Sharma, S. Verma, A. Singh, M. Gupta, S. Arya, Appl. Phys. A Mater. Sci. Process. 129, 457 (2023)

    ADS  Google Scholar 

  9. V. Bijalwan, J. Erhart, Z. Spotz, D. Sobola, V. Prajzler, P. Tofel, K. Maca, J. Am. Ceram. Soc. 104, 1088 (2021)

    Google Scholar 

  10. J.P.B. Silva, E.C. Queirós, P.B. Tavares, K.C. Sekhar, K. Kamakshi, J.A. Moreira, A. Almeida, M. Pereira, M.J.M. Gomes, J. Electroceram.Electroceram. 35, 135 (2015)

    Google Scholar 

  11. V. Madhu Babu, J. Paul Praveen, D. Das, Chem. Phys. Lett. Phys. Lett. 772, 138560 (2021)

    Google Scholar 

  12. R.L. Nayak, Y. Zhang, S.S. Dash, M.P.K. Sahoo, Ceram. Int. 48, 10803 (2022)

    Google Scholar 

  13. N. Buatip, M. Dhanunjaya, P. Amonpattaratkit, P. Pomyai, T. Sonklin, K. Reichmann, P. Janphaung, S. Pojprapai, Radiat. Phys. Chem.. Phys. Chem. 172, 108770 (2020)

    Google Scholar 

  14. A. Zhang, R. Jing, M. Zhuang, H. Hou, L. Zhang, J. Zhang, X. Lu, Y. Yan, H. Du, L. Jin, Ceram. Int. 47, 32747 (2021)

    Google Scholar 

  15. Z. Hanani, S. Merselmiz, M. Amjoud, D. Mezzane, M. Lahcini, J. Ghanbaja, M. Spreitzer, D. Vengust, M. El Marssi, I.A. Luk’yanchuk, Z. Kutnjak, B. Rožič, M. Gouné, J. Mater. Mater. 8, 873 (2022)

    Google Scholar 

  16. W. Liu, X. Ren, Phys. Rev. Lett. 103, 1 (2009)

    Google Scholar 

  17. J. Shi, X. Lu, J. Shao, B. Fang, S. Zhang, Q. Du, J. Ding, X. Zhao, H. Luo, Ferroelectrics 507, 186 (2017)

    ADS  Google Scholar 

  18. K. Xu, L. Li, P. Yang, W. Peng, Ceram. Int. 47, 25901 (2021)

    Google Scholar 

  19. R. Verma, A. Chauhan, K.M. Batoo, R. Kumar, M. Hadi, E.H. Raslan, Ceram. Int. 47, 15442 (2021)

    Google Scholar 

  20. P. Parjansri, U. Intatha, S. Eitssayeam, Mater. Res. Bull. 65, 61 (2015)

    Google Scholar 

  21. H. Amorín, M. Venet, E. Chinarro, P. Ramos, M. Algueró, A. Castro, J. Eur. Ceram. Soc. 42, 4907 (2022)

    Google Scholar 

  22. X. Ji, C. Wang, T. Harumoto, S. Zhang, R. Tu, Q. Shen, J. Shi, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  23. Y. Liu, H. Zhang, W. Shi, Q. Wang, G. Jiang, B. Yang, W. Cao, J. Tan, J. Mater. Sci. Technol. Mater. Sci. Technol. 117, 207 (2022)

    Google Scholar 

  24. S. Kumari, A. Kumar, A. Kumar, V. Kumar, V.N. Thakur, Ceram. Int. 48, 13780 (2022)

    Google Scholar 

  25. H. Mezzourh, S. Belkhadir, D. Mezzane, M. Amjoud, E. Choukri, A. Lahmar, Y. Gagou, Z. Kutnjak, M. El Marssi, Phys. B Condens. Matter 603, 412760 (2021)

    Google Scholar 

  26. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. Phys. Lett. 102, 0 (2013)

    Google Scholar 

  27. V. Pal, D. Kumar, A.K. Singh, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 288, 116194 (2023)

    Google Scholar 

  28. B. Mohanty, N.C. Nayak, B.N. Parida, R.K. Parida, Inorg. Chem. Commun.Commun. 151, 110588 (2023)

    Google Scholar 

  29. I. Coondoo, A. Krylov, D.K. Sharma, S. Krylova, D. Alikin, J.S. Kumar, A. Mirzorakhimov, N. Melnikova, M.J. Soares, A.L. Kholkin, Mater. Chem. Phys. 277, 125526 (2022)

    Google Scholar 

  30. J. Pokorńy, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, J. Appl. Phys. 109, 114110 (2021)

    ADS  Google Scholar 

  31. A. Dahri, Y. Gagou, N. Abdelmoula, H. Khemakhem, M. El Marssi, Ceram. Int. 48, 3157 (2022)

    Google Scholar 

  32. R.M. German, Jom 68, 878 (2016)

    Google Scholar 

  33. S. Shi, H. Hashimoto, T. Sekino, Ceram. Int. 47, 3272 (2021)

    Google Scholar 

  34. P. Jaiban, M. Tongtham, P. Wannasut, N. Pisitpipathsin, O. Namsar, N. Chanlek, S. Pojprapai, R. Yimnirun, R. Guo, A.S. Bhalla, A. Watcharapasorn, Ceram. Int. 45, 17502 (2019)

    Google Scholar 

  35. M.S. Alkathy, A. Rahaman, V.R. Mastelaro, F.P. Milton, F.L. Zabotto, M.H. Lente, A. Strabello, J.A. Eiras, Mater. Chem. Phys. 294, 127032 (2023)

    Google Scholar 

  36. Q. Yu, D. Liu, R. Wang, Z. Feng, Z. Zuo, S. Qin, H. Liu, X. Xu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 177, 639 (2012)

    Google Scholar 

  37. T.S. Jeon, J.M. White, D.L. Kwong, Appl. Phys. Lett. 78, 368 (2001)

    ADS  Google Scholar 

  38. W. Zheng, J. Lin, X. Liu, W. Yang, Y. Li, RSC Adv. 11, 2616 (2021)

    ADS  Google Scholar 

  39. Q. Zhang, W. Cai, Q. Li, R. Gao, G. Chen, X. Deng, Z. Wang, X. Cao, C. Fu, J. Alloys Compd. 794, 542 (2019)

    Google Scholar 

  40. F. Wei, L. Zhang, R. Jing, Q. Hu, D.O. Alikin, Y.Y. Shur, J. Zhang, X. Lu, Y. Yan, H. Du, X. Wei, L. Jin, Ceram. Int. 47, 34676 (2021)

    Google Scholar 

  41. X.W. Wang, X.N. Shi, R.Y. Zhang, Y.C. Shi, Y.F. Liang, B.H. Zhang, H.N. Li, S.Y. Hu, K.X. Yu, Y.C. Hu, J. Shang, S.Q. Yin, J. Mater. Sci. Mater. Electron. 33, 20399 (2022)

    Google Scholar 

  42. W. Ji, B. Fang, X. Lu, S. Zhang, N. Yuan, J. Ding, Phys. B Condens. Matter 567, 65 (2019)

    ADS  Google Scholar 

  43. X. Lu, B. Fang, S. Zhang, N. Yuan, J. Ding, X. Zhao, F. Wang, Y. Tang, W. Shi, H. Xu, H. Luo, Funct. Mater. Lett.. Mater. Lett. 10, 1750046 (2017)

    ADS  Google Scholar 

  44. S. Merselmiz, Z. Hanani, D. Mezzane, A.G. Razumnaya, M. Amjoud, L. Hajji, S. Terenchuk, B. Rožič, I.A. Luk’yanchuk, Z. Kutnjak, RSC Adv. Adv. 11, 9459 (2021)

    ADS  Google Scholar 

  45. A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho Moreira, M.J.M. Gomes, Ceram. Int.. Int. 45, 5808 (2019)

    Google Scholar 

  46. R. Muhammad, M.A. Khalil, M.S. Castro, Ceram. Int. 46, 1059 (2020)

    Google Scholar 

  47. Y. Zhao, Q. Xu, X. Zhou, M. Yan, H. Gong, X. Yuan, Ceram. Int.. Int. 49, 8259 (2023)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Physics, Center of Nanotechnology, and Central Instrumental Facility, IIT Guwahati for the instrumental facilities. The authors are thankful to ISRO (STC#0364) and TIDF (Ref. No: TIH/2022/R-83) for the financial support. The author gratefully acknowledges the ongoing INUP-i2i and SWASTHA projects for experimental facilities. SPB is grateful for the financial assistance provided by MHRD.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SPB: conceptualization, data curation, investigation, formal analysis, writing-original draft, writing—review and editing. RP: characterization, analysis, and write-up. PD: supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Pamu Dobbidi.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balmuchu, S.P., Pathak, R. & Dobbidi, P. Composition-driven (barium titanate based ceramics) pseudo-binary system for energy storage applications through ferroelectric studies. Appl. Phys. A 129, 767 (2023). https://doi.org/10.1007/s00339-023-07067-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07067-1

Keywords

Navigation