Skip to main content
Log in

Solvent-Free Synthesis of 1, 4 Dihydropyridines Derivatives via Hantzsch Reaction Employing MgFe2O4 MNPs: An Efficient and Recyclable Heterogeneous Catalyst

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Pristine magnesium spinel ferrite nanoparticles (MgFe2O4, MNPs) were fabricated via sol–gel auto combustion and elucidated by XRD, SEM, EDAX, TEM, FTIR, BET and VSM for structural and physical characteristics. Fabricated MgFe2O4 MNPs found to be an efficient, robust and magnetically separable reusable heterogeneous catalyst for one pot three component solvent free synthesis of biologically important 1,4-dihydropyridines (1, 4 DHP’s) via Hantzsch condensation reaction. This convention was effectively appropriate to an extensive variety physically distinct aryl-aldehydes with ethyl acetoacetate and ammonium acetate to manage the required 1,4-dihydropyridines (1, 4 DHP’s) derivatives. The structural investigations approved the sustainability and reusability of the MgFe2O4, MNPs towards current organic reactions. The novelties of this protocol are operational cleanness, short reaction time, nontoxic, inexpensive and magnetically separable heterogeneous catalyst may perhaps easily be recycled deprived of remarkable decline in catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Scheme 4
Fig. 11

Similar content being viewed by others

Data availability

The synthetic procedures, characterization, and spectral data supporting this article have been uploaded as part of the Electronic supplementary information.

References

  1. D. Das, Multicomponent Reactions in Organic Synthesis Using Copper-Based Nanocatalysts. ChemistrySelect 1, 1959–1980 (2016)

    Article  CAS  Google Scholar 

  2. R.S. Varma, Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Publications 4(11), 5866–5878 (2016)

    CAS  Google Scholar 

  3. M. Kaushik, A. Moores, New trends in sustainable nanocatalysis: emerging use of earth abundant metals, current opinion in green and sustainable. Chemistry 7, 39–45 (2017)

    Google Scholar 

  4. M.B. Gawande, R. Luque, R. Zboril, The rise of magnetically recyclable nanocatalysts. ChemCatChem 6, 3312–3313 (2014)

    Article  CAS  Google Scholar 

  5. A. Maleki, M. Kamalzare, M. Aghaei, Efficient one-pot four-component synthesis of 1, 4-dihydropyridines promoted by magnetite/chitosan as a magnetically recyclable heterogeneous nanocatalyst. J. Nanostruct. Chem. 5, 95–105 (2015)

    Article  CAS  Google Scholar 

  6. R. Hudson, Y. Feng, R.S. Varma, A. Moores, Bare magnetic nanoparticles: sustainable synthesis and applications in catalytic organic transformations. Green Chem. 16, 4493–4505 (2014)

    Article  CAS  Google Scholar 

  7. R.M. Borade, S.B. Somvanshi, S.B. Kale, R.P. Pawar, K. Jadhav, Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones. Mater. Res. Express 7, 016116 (2020)

    Article  CAS  Google Scholar 

  8. A. Hilgeroth, H. Lilie, Structure-activity relationships of first bishydroxymethyl-substituted cage dimeric 4-aryl-1, 4-dihydropyridines as HIV-1 protease inhibitors. Eur. J. Med. Chem. 38, 495–499 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. C. Han, W. Meng, H. Liu, Y. Liu, J. Tao, DMAP-catalyzed four-component one-pot synthesis of highly functionalized spirooxindole-1, 4-dihydropyridines derivatives in aqueous ethanol. Tetrahedron 70, 8768–8774 (2014)

    Article  CAS  Google Scholar 

  10. N. Edraki, A.R. Mehdipour, M. Khoshneviszadeh, R. Miri, Dihydropyridines: evaluation of their current and future pharmacological applications. Drug Discov. Today 14, 1058–1066 (2009)

    Article  CAS  PubMed  Google Scholar 

  11. G.W. Zamponi, Antagonist binding sites of voltage-dependent calcium channels. Drug Dev. Res. 42, 131–143 (1997)

    Article  CAS  Google Scholar 

  12. A. Vijesh, A.M. Isloor, S. Peethambar, K. Shivananda, T. Arulmoli, N.A. Isloor, Hantzsch reaction: synthesis and characterization of some new 1, 4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur. J. Med. Chem. 46, 5591–5597 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. M. El-Ashmawy, M. El-Sherbeny, N. El-Gohary, Synthesis and antitumor screening of new series of pyrimido-[4, 5-b] quinolines and [1, 2, 4] triazolo [2′, 3′: 3, 4] pyrimido [6, 5-b] quinolines. Med. Chem. Res. 22, 2724–2736 (2013)

    Article  CAS  Google Scholar 

  14. S. Bahekar, D. Shinde, Synthesis and anti-inflammatory activity of 1, 4-dihydropyridines. Acta Pharm. 52, 281–287 (2002)

    CAS  Google Scholar 

  15. T. Althuis, P. Moore, H. Hess, Development of ethyl 3, 4-dihydro-4-oxopyrimido [4, 5-b] quinoline-2-carboxylate, a new prototype with oral antiallergy activity. J. Med. Chem. 22, 44–48 (1979)

    Article  CAS  PubMed  Google Scholar 

  16. P. Pallavicini, A. Dona, A. Taglietti, P. Minzioni, M. Patrini, G. Dacarro, G. Chirico, L. Sironi, N. Bloise, L. Visai, Self-assembled monolayers of gold nanostars: a convenient tool for near-IR photothermal biofilm eradication. Chem. Commun. 50, 1969–1971 (2014)

    Article  CAS  Google Scholar 

  17. H.-A.S. Abbas, H.N. Hafez, A.-R.B. El-Gazzar, Synthesis, in vitro antimicrobial and in vivo antitumor evaluation of novel pyrimidoquinolines and its nucleoside derivatives. Eur. J. Med. Chem. 46, 21–30 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. A. Krauze, S. Ģērmane, O. Eberlin, I. Šturms, V. Klusā, G. Duburs, Derivatives of 3-cyano-6-phenyl-4-(3-pyridyl)-pyridine-2 (1H)-thione and their neurotropic activity. Eur. J. Med. Chem. 34, 301–310 (1999)

    Article  CAS  Google Scholar 

  19. S. Gullapalli, P. Ramarao, L-type Ca2+ channel modulation by dihydropyridines potentiates κ-opioid receptor agonist induced acute analgesia and inhibits development of tolerance in rats. Neuropharmacology 42, 467–475 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. A. Hantzsch, Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem. 215, 1–82 (1882)

    Article  Google Scholar 

  21. J. Yadav, B. Reddy, A. Basak, A. Narsaiah, Three-component coupling reactions in ionic liquids: an improved protocol for the synthesis of 1, 4-dihydropyridines. Green Chem. 5, 60–63 (2003)

    Article  CAS  Google Scholar 

  22. M. Anniyappan, D. Muralidharan, P.T. Perumal, Synthesis of Hantzsch 1, 4-dihydropyridines under microwave irradiation. Synth. Commun. 32, 659–663 (2002)

    Article  CAS  Google Scholar 

  23. A. Kumar, R.A. Maurya, Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles. Synlett 2008, 883–885 (2008)

    Article  Google Scholar 

  24. G. Giorgi, M.F. Adamo, F. Ponticelli, A. Ventura, Synthesis, structural and conformational properties, and gas phase reactivity of 1, 4-dihydropyridine ester and ketone derivatives. Org. Biomol. Chem. 8, 5339–5344 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. H.G. Alvim, G.A. Bataglion, L.M. Ramos, A.L. de Oliveira, H.C. de Oliveira, M.N. Eberlin, J.L. de Macedo, W.A. da Silva, B.A. Neto, Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS (/MS). Tetrahedron 70, 3306–3313 (2014)

    Article  CAS  Google Scholar 

  26. B. Datta, M.A. Pasha, Silica sulfuric acid: an efficient heterogeneous catalyst for the one-pot synthesis of 1, 4-dihydropyridines under mild and solvent-free conditions. Chin. J. Catal. 32, 1180–1184 (2011)

    Article  CAS  Google Scholar 

  27. R.M. Borade, P.R. Shinde, S.B. Kale, R.P. Pawar, Preparation, characterization and catalytic application of CoFe2O4 nanoparticles in the synthesis of benzimidazoles, in: AIP Conference Proceedings. (AIP Publishing LLC, 2018), pp. 030194.

  28. P.P. Khirade, A.R. Chavan, S.B. Somvanshi, J.S. Kounsalye, K. Jadhav, Tuning of physical properties of multifunctional Mg-Zn spinel ferrite nanocrystals: a comparative investigations manufactured via conventional ceramic versus green approach sol-gel combustion route. Mater. Res. Express 7, 116102 (2020)

    Article  CAS  Google Scholar 

  29. G.-W. Wang, Mechanochemical organic synthesis. Chem. Soc. Rev. 42, 7668–7700 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. A.M. Romani, Magnesium in health and disease, Interrelations between essential metal ions and human diseases, 49–79 (2013)

  31. A. Rosanoff, C.M. Weaver, R.K. Rude, Suboptimal magnesium status in the United States: are the health consequences underestimated? Nutr. Rev. 70, 153–164 (2012)

    Article  PubMed  Google Scholar 

  32. L. Teigen, C.J. Boes, An evidence-based review of oral magnesium supplementation in the preventive treatment of migraine. Cephalalgia 35, 912–922 (2015)

    Article  PubMed  Google Scholar 

  33. V. Vinayak, P.P. Khirade, S.D. Birajdar, D. Sable, K. Jadhav, Structural, microstructural, and magnetic studies on magnesium (Mg2+)-substituted CoFe2O4 nanoparticles. J. Supercond. Novel Magn. 29, 1025–1032 (2016)

    Article  CAS  Google Scholar 

  34. K.-W. Jung, S. Lee, Y.J. Lee, Synthesis of novel magnesium ferrite (MgFe2O4)/biochar magnetic composites and its adsorption behavior for phosphate in aqueous solutions. Biores. Technol. 245, 751–759 (2017)

    Article  CAS  Google Scholar 

  35. J. Nonkumwong, P. Pakawanit, A. Wipatanawin, P. Jantaratana, S. Ananta, L. Srisombat, Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles. Mater. Sci. Eng. C 61, 123–132 (2016)

    Article  CAS  Google Scholar 

  36. P.B. Kharat, S.B. Somvanshi, P.P. Khirade, K. Jadhav, Induction heating analysis of surface-functionalized nanoscale CoFe2O4 for magnetic fluid hyperthermia toward noninvasive cancer treatment. ACS Omega 5, 23378–23384 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Jose, R. Kumar, S. Harilal, G.E. Mathew, D.G.T. Parambi, A. Prabhu, M. Uddin, L. Aleya, H. Kim, B. Mathew, Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ. Sci. Pollut. Res. 27, 19214–19225 (2020)

    Article  Google Scholar 

  38. J. Chandradass, A.H. Jadhav, K.H. Kim, H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders. J. Alloy. Compd. 517, 164–169 (2012)

    Article  CAS  Google Scholar 

  39. S.B. Somvanshi, S.R. Patade, D.D. Andhare, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, P.P. Khirade, K. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloy. Compd. 835, 155422 (2020)

    Article  CAS  Google Scholar 

  40. T. Srinivasan, C. Srivastava, N. Venkataramani, M. Patni, Infrared absorption in spinel ferrites. Bull. Mater. Sci. 6, 1063–1067 (1984)

    Article  CAS  Google Scholar 

  41. S. Bhattacharjee, DLS and zeta potential–what they are and what they are not? J. Control. Release 235, 337–351 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. K. DoymuŞ, The effect of ionic electrolytes and pH on the zeta potential of fine coal particles. Turk. J. Chem. 31, 589–597 (2007)

    Google Scholar 

  43. P. Wang, A.A. Keller, Natural and engineered nano and colloidal transport: role of zeta potential in prediction of particle deposition. Langmuir 25, 6856–6862 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. E.F. de la Cruz, Y. Zheng, E. Torres, W. Li, W. Song, K. Burugapalli, Zeta potential of modified multi-walled carbon nanotubes in presence of poly (vinyl alcohol) hydrogel. Int. J. Electrochem. Sci. (2012). https://doi.org/10.1016/S1452-3981(23)13979-4

    Article  Google Scholar 

  45. C.H. Christensen, J.C. Groen, Chem. Soc. Rev. 37, 2530–2542 (2008)

    Article  PubMed  Google Scholar 

  46. A. Bamoniri, S. Fouladgar, SnCl4-functionalized nano-Fe3O4 encapsulated-silica particles as a novel heterogeneous solid acid for the synthesis of 1, 4-dihydropyridine derivatives. RSC Adv. 5, 78483–78490 (2015)

    Article  CAS  Google Scholar 

  47. J. Safari, F. Azizi, M. Sadeghi, Chitosan nanoparticles as a green and renewable catalyst in the synthesis of 1, 4-dihydropyridine under solvent-free conditions. New J. Chem. 39, 1905–1909 (2015)

    Article  CAS  Google Scholar 

  48. S. Igder, A.R. Kiasat, M.R. Shushizadeh, Melamine supported on hydroxyapatite-encapsulated-γ-Fe2O3: a novel superparamagnetic recyclable basic nanocatalyst for the synthesis of 1, 4-dihydropyridines and polyhydroquinolines. Res. Chem. Intermed. 41, 7227–7244 (2015)

    Article  CAS  Google Scholar 

  49. T.R. Naik, S. Shivashankar, Heterogeneous bimetallic ZnFe2O4 nanopowder catalyzed synthesis of Hantzsch 1, 4-dihydropyridines in water. Tetrahedron Lett. 57, 4046–4049 (2016)

    Article  Google Scholar 

  50. N. Taheri, F. Heidarizadeh, A. Kiasat, A new magnetically recoverable catalyst promoting the synthesis of 1, 4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions. J. Magn. Magn. Mater. 428, 481–487 (2017)

    Article  CAS  Google Scholar 

  51. B. Maleki, A. Mofrad, R. Tayebee, A. Khojastehnezhad, H. Alinezhad, E. Rezaei Seresht, One-pot synthesis of 1, 4-dihydropyridine derivatives catalyzed by silica-coated magnetic NiFe2O4 nanoparticles-supported H14 [NaP5W30O110]. Russ. J. Gen. Chem. 87, 2922–2929 (2017)

    Article  CAS  Google Scholar 

  52. W. He, Z. Fang, K. Zhang, T. Tu, N. Lv, C. Qiu, K. Guo, A novel micro-flow system under microwave irradiation for continuous synthesis of 1, 4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chem. Eng. J. 331, 161–168 (2018)

    Article  CAS  Google Scholar 

  53. E. Pourian, S. Javanshir, Z. Dolatkhah, S. Molaei, A. Maleki, Ultrasonic-assisted preparation, characterization, and use of novel biocompatible core/shell Fe3O4@ GA@ isinglass in the synthesis of 1, 4-dihydropyridine and 4 H-pyran derivatives. ACS Omega 3, 5012–5020 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Maleki, R. Firouzi-Haji, Z. Hajizadeh, Magnetic guanidinylated chitosan nanobiocomposite: a green catalyst for the synthesis of 1, 4-dihydropyridines. Int. J. Biol. Macromol. 116, 320–326 (2018)

    Article  CAS  PubMed  Google Scholar 

  55. M. Ghanbari, S. Moradi, M. Setoodehkhah, Fe3O4@SiO2@ADMPT/H6P2W18O62: a novel Wells-Dawson heteropolyacid-based magnetic inorganic–organic nanohybrid material as potent Lewis acid catalyst for the efficient synthesis of 1, 4-dihydopyridines. Green Chem. Lett. Rev. 11, 111–124 (2018)

    Article  CAS  Google Scholar 

  56. A. Maleki, V. Eskandarpour, J. Rahimi, N. Hamidi, Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohyd. Polym. 208, 251–260 (2019)

    Article  CAS  Google Scholar 

  57. H. Alinezhad, M. Tajbakhsh, B. Maleki, F. Pourshaban Oushibi, Acidic ionic liquid [H-NP]HSO4 promoted one-pot synthesis of dihydro-1H-indeno [1, 2-b] pyridines and polysubstituted imidazoles. Polycycl. Aromat. Copds. 40, 1485–1500 (2020)

    Article  CAS  Google Scholar 

  58. R. Taheri-Ledari, J. Rahimi, A. Maleki, Synergistic catalytic effect between ultrasound waves and pyrimidine-2, 4-diamine-functionalized magnetic nanoparticles: applied for synthesis of 1, 4-dihydropyridine pharmaceutical derivatives. Ultrason. Sonochem. 59, 104737 (2019)

    Article  PubMed  Google Scholar 

  59. Z. Hajizadeh, A. Maleki, J. Rahimi, R. Eivazzadeh-Keihan, Halloysite nanotubes modified by Fe3O4 nanoparticles and applied as a natural and efficient nanocatalyst for the symmetricalhantzsch reaction. SILICON 12, 1247–1256 (2020)

    Article  CAS  Google Scholar 

  60. P. Wu, L. Feng, Y. Liang, X. Zhang, B. Mahmoudi, M. Kazemnejadi, Magnetic Fe–CO–Mo alloy nano-rods prepared from chemical decomposition of a screw (a top-down approach): an efficient and cheap catalyst for the preparation of dihydropyridine and dihydropyrimidone derivatives. Appl. Catal. A 590, 117301 (2020)

    Article  CAS  Google Scholar 

  61. S. Asgharnasl, R. Eivazzadeh-Keihan, F. Radinekiyan, A. Maleki, Preparation of a novel magnetic bionanocomposite based on factionalized chitosan by creatine and its application in the synthesis of polyhydroquinoline, 1, 4-dyhdropyridine and 1, 8-dioxo-decahydroacridine derivatives. Int. J. Biol. Macromol. 144, 29–46 (2020)

    Article  CAS  PubMed  Google Scholar 

  62. R.P. Kagne, G.H. Nikam, V.G. Kalalawe, S.N. Niwadange, D.R. Munde, An efficient protocol for synthesis of 1, 4-dihydropyridine derivatives by using graphene oxide nano particles as a catalyst. J. Chem. Chem. Sci. 7, 1064–1070 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are very much indebted to Punyashlok Ahilyadevi Holkar Solapur University for XRD, Materials Research Centre, Malaviya National Institute of Technology (MNIT), Jaipur for TEM and Zeta potential characterization, and Sophisticated Analytical Instrument Facility (SAIF), Panjab University, Chandigarh for NMR and HRMS measurements.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

RMB: Formal analysis, investigation, methodology, data curation, visualization, writing original draft. SBK: investigation, methodology, PPK: formal analysis, visualization, writing—review and editing. KMJ: conceptualization, supervision, RPP: validation, supervision.

Corresponding authors

Correspondence to Ravikumar M. Borade or Pankaj P. Khirade.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2420 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borade, R.M., Kale, S.B., Khirade, P.P. et al. Solvent-Free Synthesis of 1, 4 Dihydropyridines Derivatives via Hantzsch Reaction Employing MgFe2O4 MNPs: An Efficient and Recyclable Heterogeneous Catalyst. J Inorg Organomet Polym 34, 1104–1120 (2024). https://doi.org/10.1007/s10904-023-02858-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02858-8

Keywords

Navigation