Skip to main content
Log in

Mechanical, Thermal, and Erosive Behavior of Recovered Inorganic Diamond Particles in Polyepoxide Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present scenario forces researchers to reduce raw material usage for future conservation and imposes a responsibility to reuse the waste by converting it into valuable products. With a state of potential, the components are put forward for reusing the diamond-cutting waste as effective filler particles in the polyepoxide-glass laminated hybrid composite. The polymer composites were prepared using the hand lay-up process under hydraulic loading conditions. The composites were formulated by changing the diamond filler fraction (1, 3, 5 and 10 wt%) and keeping a constant glass weight percentage of 20%. The composite’s mechanical, thermal stability and erosion properties were evaluated to study the effect of diamond filler material in glass fibre composites. With the addition of 5% diamond particles, the tensile, flexural, and Shore D hardness were improved by a maximum of 48, 34 and 26%, respectively, compared to the polyepoxide glass fibre composite, due to the restraint on deformation of polymer chains. There was minor diamond particle aggregation due to fines in more than 5% of the diamond filler, reducing the rate of improvement of the mechanical behaviour. The higher thermal conductivity and increased strength offered by diamond filler improved thermal resistance and slowed down the thermal degradation of composites. The sand erosion test reveals that diamond particles boosted the erosive wear resistance of the composites by offering high mechanical strength, which could change the erosion wear mechanism. Erosion morphology determined through SEM analysis found that high-volume diamond particles reduced erodent-polymer matrix interaction at the micro level, decreasing the erosion wear of diamond-filled composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. M.K. Jaunich, J. DeCarolis, R. Handfield, E. Kemahlioglu-Ziya, S.R. Ranjithan, H. Moheb-Alizadeh, Life-cycle modeling framework for electronic waste recovery and recycling processes. Resour. Conserv. Recycl. 161, 104841 (2020)

    Article  Google Scholar 

  2. G. Gök, Ş Tulun, O.A. Gürbüz, Consumer behavior and policy about e-waste in Aksaray and Niğde Cities, Turkey. Clean-Soil Air Water 45(7), 1500733 (2017)

    Article  Google Scholar 

  3. B. Silvana, S.R. Dimitrijević, A.T. Veličković, F.M. Ivanović, M.M. Veljković, ŽK. Jovanović, P.D. Stevan, Recovery of tungsten trioxide from waste diamond core drilling crowns by nitric acid leaching. Int. J. Refract Metal Hard Mater. 101, 105695 (2021)

    Article  Google Scholar 

  4. S. Agrawal, K.K. Singh, P.K. Sarkar, A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments. Tribol. Int. 96, 217–224 (2016)

    Article  CAS  Google Scholar 

  5. K. Vishal, K. Rajkumar, Dry sliding wear behavior of poly ether ether ketone (PEEK) reinforced with graphite and synthetic diamond particles. Diam. Relat. Mater. 130, 109404 (2022)

    Article  CAS  Google Scholar 

  6. A. Gaurav, K.K. Singh, Effect of pristine MWCNTs on the fatigue life of GFRP laminates-an experimental and statistical evaluation. Compos. B Eng. 172, 83–96 (2019)

    Article  CAS  Google Scholar 

  7. S. Vigneshwaran, M. Uthayakumar, V. Arumugaprabu, Development and sustainability of industrial waste-based red mud hybrid composites. J. Clean. Prod. 230, 862–868 (2019)

    Article  CAS  Google Scholar 

  8. A.S. Sufian, N. Samat, M.Y.M. Sulaiman, W. Paulus, Alumina recovery from industrial waste: study on the thermal, tensile and wear properties of polypropylene/alumina nanocomposites. Int. J. Precis. Eng. Manuf. Green Technol. 7(1), 163–172 (2020)

    Article  Google Scholar 

  9. L.W. Zhang, W.M. Ji, K.M. Liew, Mechanical properties of diamond nanothread reinforced polymer composites. Carbon 132, 232–240 (2018)

    Article  CAS  Google Scholar 

  10. V. Kumar, R. Kaliyamoorthy, Friction and wear characteristics of synthetic diamond and graphene-filled polyether ether ketone composites. High Perform. Polym. 35(4), 348–365 (2023)

    Article  CAS  Google Scholar 

  11. M. Khan, A. Hamid, L. Tiehu, A. Zada, F. Attique, N. Ahmad, Y. Khan, Surface optimization of detonation nanodiamonds for the enhanced mechanical properties of polymer/nanodiamond composites. Diam. Relat. Mater. 107, 107897 (2020)

    Article  CAS  Google Scholar 

  12. O. Celep, G. Aydin, I. Karakurt, Diamond recovery from waste sawblades: a preliminary investigation. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 227(6), 917–921 (2013)

    Article  CAS  Google Scholar 

  13. S.H. Ali, The ecology of diamond sourcing: from mined to synthetic gems as a sustainable transition. J. Bioecon. 19(1), 115–126 (2017)

    Article  Google Scholar 

  14. Y.T. Shieh, K.C. Hsieh, C.C. Cheng, Carbon nanotubes stabilize poly (vinyl chloride) against thermal degradation. Polym. Degrad. Stab. 144, 221–230 (2017)

    Article  CAS  Google Scholar 

  15. Y. Zhou, H. Wang, L. Wang, K. Yu, Z. Lin, L. He, Y. Bai, Fabrication and characterization of aluminum nitride polymer matrix composites with high thermal conductivity and low dielectric constant for electronic packaging. Mater. Sci. Eng. B 177(11), 892–896 (2012)

    Article  CAS  Google Scholar 

  16. M.Z. Zakaria, S.H. Ahmada, Investigation on thermal conductivity and mechanical properties of thermoplastic natural rubber filled with alumina and boron carbide nanocomposites. Energy 2(1), 1–10 (2013)

    Google Scholar 

  17. B. Ribeiro, J.A.R. Corredor, M.L. Costa, E.C. Botelho, M.C. Rezende, Multifunctional characteristics of glass fiber-reinforced epoxy polymer composites with multiwalled carbon nanotube buckypaper interlayer. Polym. Eng. Sci. 60(4), 740–751 (2020)

    Article  CAS  Google Scholar 

  18. C. Guan, Y. Qin, L. Li, M. Wang, C.T. Lin, X. He, N. Jiang, Highly thermally conductive polymer composites with barnacle-like nano-crystalline diamond@ silicon carbide hybrid architecture. Compos. B Eng. 198, 108167 (2020)

    Article  CAS  Google Scholar 

  19. J.R.M. d’Almeida, S.N. Monteiro, G.W. Menezes, R.J.S. Rodriguez, Diamond-epoxy composites. J. Reinf. Plast. Compos. 26(3), 321–330 (2007)

    Article  Google Scholar 

  20. J. Chen, I.M. Hutchings, T. Deng, M.S. Bradley, K.K. Koziol, The effect of carbon nanotube orientation on erosive wear resistance of CNT-epoxy based composites. Carbon 73, 421–431 (2014)

    Article  CAS  Google Scholar 

  21. M. Choudhary, T. Singh, M. Dwivedi, A. Patnaik, Waste marble dust-filled glass fiber-reinforced polymer composite part I: physical, thermomechanical, and erosive wear properties. Polym. Compos. 40(10), 4113–4124 (2019)

    Article  CAS  Google Scholar 

  22. N. Banazadeh-Neishabouri, S.A. Shirazi, Development of erosion equations for fiberglass reinforced plastic (FRP). Wear 476, 203657 (2021)

    Article  CAS  Google Scholar 

  23. V.A. Plotnikov, S.V. Makarov, D.G. Bogdanov, A.S. Bogdanov, The structure of detonation nanodiamond particles, in AIP Conference Proceedings. (AIP Publishing LLC, Melville, 2016), p.040045

    Google Scholar 

  24. A. Perumal, R. Kaliyamoorthy, V. Kumar, Impact of recovered silicon particles incorporation on tribo-characteristics of poly ether ether ketone polymer composite. High Perform. Polym. (2023). https://doi.org/10.1177/09540083231189894

    Article  Google Scholar 

  25. L. Kunhikrishnan, K. Vishal, S. Palaniyappan, Mechanical and thermal characterization on synthesized silane-treated graphitic carbon nitride (g-C3N4) reinforced 3D printed poly (Lactic Acid) composite. J. Inorg. Organomet. Polym. Mater. 33, 1234 (2023)

    Article  CAS  Google Scholar 

  26. K. Vishal, K. Rajkumar, P. Sabarinathan, Effect of recovered silicon filler inclusion on mechanical and tribological properties of polytetrafluoroethylene (PTFE) composite. SILICON 2021, 1–10 (2021)

    Google Scholar 

  27. M. Włoch, F. Bagiński, P. Koziński, J. Datta, Submicron inorganic particles as an additional filler in hybrid epoxy matrix composites reinforced with glass fibres. Polym. Polym. Compos. 28(7), 484–491 (2020)

    Google Scholar 

  28. V.A. Prabu, R.D.J. Johnson, P. Amuthakkannan, V. Manikandan, Usage of industrial wastes as particulate composite for environment management: hardness, tensile and impact studies. J. Environ. Chem. Eng. 5(1), 1289–1301 (2017)

    Article  CAS  Google Scholar 

  29. P. Sabarinathan, V.E. Annamalai, K. Rajkumar, K. Vishal, Effects of recovered brown alumina filler loading on mechanical, hygrothermal and thermal properties of glass fiber–reinforced epoxy polymer composite. Polym. Polym. Compos. 29(9), S1092–S1102 (2021)

    CAS  Google Scholar 

  30. O. Asi, An experimental study on the bearing strength behavior of Al2O3 particle filled glass fiber reinforced epoxy composites pinned joints. Compos. Struct. 92(2), 354–363 (2010)

    Article  Google Scholar 

  31. D. Matykiewicz, M. Barczewski, S. Michałowski, Basalt powder as an eco-friendly filler for epoxy composites: thermal and thermo-mechanical properties assessment. Compos. B Eng. 164, 272–279 (2019)

    Article  CAS  Google Scholar 

  32. S. Biswas, A. Satapathy, Tribo-performance analysis of red mud filled glass-epoxy composites using Taguchi experimental design. Mater. Des. 30(8), 2841–2853 (2009)

    Article  CAS  Google Scholar 

  33. D.A. Ahmed, C.S. Yerramalli, Experimental and computational analysis of the erosion behaviour of unidirectional glass fiber epoxy composites. Wear 462, 203525 (2020)

    Article  Google Scholar 

  34. N.M. Barkoula, J. Karger-Kocsis, Effects of fibre content and relative fibre-orientation on the solid particle erosion of GF/PP composites. Wear 252(1–2), 80–87 (2002)

    Article  CAS  Google Scholar 

  35. K. Anderson, S. Karimi, S. Shirazi, Erosion testing and modeling of several non-metallic materials. Wear 477, 203811 (2021)

    Article  CAS  Google Scholar 

  36. X. Pei, K. Friedrich, Erosive wear properties of unidirectional carbon fiber reinforced PEEK composites. Tribol. Int. 55, 135–140 (2012)

    Article  CAS  Google Scholar 

  37. T. Deng, M.S. Bingley, M.S. Bradley, The influence of particle rotation on the solid particle erosion rate of metals. Wear 256(11–12), 1037–1049 (2004)

    Article  CAS  Google Scholar 

  38. A. Mansouri, H. Arabnejad, S.A. Shirazi, B.S. McLaury, A combined CFD/experimental methodology for erosion prediction. Wear 332, 1090–1097 (2015)

    Article  Google Scholar 

  39. A. Akinci, E. Ercenk, S. Yilmaz, U. Sen, Slurry erosion behaviors of basalt filled low density polyethylene composites. Mater. Des. 32(5), 3106–3111 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work is not funded by any agency.

Author information

Authors and Affiliations

Authors

Contributions

KV—Conceptualization, Investigation, Writing- Review and Editing, NKM—Resources, Supervision and Validation, KR—Data acquisition, Visualization and Project administration.

Corresponding author

Correspondence to K. Rajkumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishal, K., Nambiraj, K.M. & Rajkumar, K. Mechanical, Thermal, and Erosive Behavior of Recovered Inorganic Diamond Particles in Polyepoxide Composites. J Inorg Organomet Polym 34, 1475–1490 (2024). https://doi.org/10.1007/s10904-023-02848-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02848-w

Keywords

Navigation