Skip to main content
Log in

Surface Modification of Carbon Nanofiber with C20H38O11 Polymer by Spun Calcination Method

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Spun calcination introduces a novel approach for the development of materials suitable for optoelectronic applications, particularly carbon-based materials. In this study, we utilized the spun calcination technique to design rGO and rGO@CNF nanocomposites with the help of C20H38O11. By subjecting polymeric nanofibers to thermal reduction, we successfully achieved the formation of rGO and rGO@CNF, as confirmed by peak resolution in X-Ray diffraction analysis. The nanocomposites exhibited a crystalline phase, with average crystallite sizes of approximately 1.33 nm and 1.22 nm for rGO and rGO@CNF, respectively. The Raman spectroscopy shows intense G and D-bands observed in the spectra further supported the formation of these carbon-based materials, with IG/ID intensity ratios of approximately 0.85 and 0.87 for rGO and rGO@CNF, respectively. The photoluminescence study shows the structural growth of the nanocomposite indicated the diffusion of carbon surfaces, which revealed that both rGO and rGO@CNF shows lower electron-hole pair recombination rate. Consequently, these materials exhibited a considerable number of delocalized free electrons, leading to enhanced photoluminescence activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.S. Sabzevar, M. Bagheri–Mohagheghi, A. Shirpay, Phys B Condens. Matter 646, 414310 (2022)

    Article  Google Scholar 

  2. S. Kumar, M. Shandilya, P. Uniyal, S. Thakur, N. Parihar, Polymer Bulletin, (2022)

  3. W. Xin, M.-G. Ma, F. Chen, ACS Appl. Nano Mater. 4, 7234–7243 (2021)

    Article  CAS  Google Scholar 

  4. S. Pandiyan, L. Arumugam, S.P. Srirengan, R. Pitchan, P. Sevugan, K. Kannan, G. Pitchan, T.A. Hegde, V. Gandhirajan, ACS Omega 5, 30363–30372 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. M. Hou, M. Xu, B. Li, ACS Sustain. Chem. Eng. 6, 2983–2990 (2018)

    Article  CAS  Google Scholar 

  6. R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40, 3941–3994 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106, 4044–4098 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Sun, J. Cheng, Bioresour. Technol. 83, 1–11 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. X. Wang, C. Yao, F. Wang, Z. Li, Small 13, 1702240 (2017)

    Article  Google Scholar 

  10. V. Paranthaman, K. Sundaramoorthy, B. Chandra, S.P. Muthu, P. Alagarsamy, R. Perumalsamy, Physica Status Solidi (a) 215, 1800298 (2018)

    Article  Google Scholar 

  11. H. Fu, B. Gao, Z. Liu, W. Liu, Z. Wang, M. Wang, J. Li, Z. Feng, A.R. Kamali, J. Electroanal. Chem. 920, 116545 (2022)

    Article  CAS  Google Scholar 

  12. V. Sharma, G.A. Kaur, N. Gupta, M. Shandilya, FlatChem 24, 100195 (2020)

    Article  CAS  Google Scholar 

  13. A.K. Kadhim, M.R. Mohammad, A.I. Abd Ali, Chem. Phys. Lett. 786, 139189 (2022)

    Article  CAS  Google Scholar 

  14. K. Nagarajan, N. Ramanujam, M. Sanjay, S. Siengchin, B. Surya Rajan, K. Sathick Basha, P. Madhu, G. Raghav, Polym. Compos. 42, 1588–1630 (2021)

    Article  CAS  Google Scholar 

  15. V. Nebol’Sin, V. Galstyan, Y. Silina, Surf. Interfaces 21, 100763 (2020)

    Article  Google Scholar 

  16. S. Yempally, S.M. Hegazy, A. Aly, K. Kannan, K.K. Sadasivuni, Macromol. Symp. 392, 2000024 (2020)

    Article  CAS  Google Scholar 

  17. M. Morsy, I.S. Yahia, H.Y. Zahran, M. Ibrahim, J. Inorg. Organomet. Polym. Mater. 29, 416–422 (2019)

    Article  CAS  Google Scholar 

  18. O.A.T. Dias, S. Konar, A.L. Leão, W. Yang, J. Tjong, M. Sain, Front. Chem. 8, 420 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Badawi, S.S. Alharthi, J. Inorg. Organomet. Polym. Mater. 32, 2345–2354 (2022)

    Article  CAS  Google Scholar 

  20. N. Kumar, S. Kumar Dwivedi, D. Chandra Tiwari, R. Tomar, Mater. Lett. 315, 131945 (2022)

    Article  CAS  Google Scholar 

  21. Q. Yao, B. Fan, Y. Xiong, C. Jin, Q. Sun, C. Sheng, Sci. Rep. 7, 1–13 (2017)

    Article  Google Scholar 

  22. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M. Atieh, Ceram. Int. 45, 14439–14448 (2019)

    Article  CAS  Google Scholar 

  23. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  24. A.K. Singh, C.-C. Yen, D.-S. Wuu, Results Phys. 33, 105206 (2022)

    Article  Google Scholar 

  25. M. Sharma, S. Rani, D.K. Pathak, R. Bhatia, R. Kumar, I. Sameera, Carbon 184, 437–444 (2021)

    Article  CAS  Google Scholar 

  26. A. Kaushal, S.K. Dhawan, V. Singh, AIP Conference Proceedings, 2115, (2019)

  27. E. Hernández-Hernández, M. Neira-Velázquez, L. de Ramos Valle, A. Ponce, D. Weinkauf, J. Nano Res. Trans. Tech. Publ. (2010). https://doi.org/10.4028/www.scientific.net/JNanoR.9.45

    Article  Google Scholar 

  28. N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. Sharma, K. Sachdev, Macromolecular Symposia (Wiley, Amsterdam, 2017), p.1700006

    Google Scholar 

  29. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Physica Status Solidi (a) 218, 2100138 (2021)

    Article  CAS  Google Scholar 

  30. G.A. Kaur, V. Sharma, N. Gupta, M. Shandilya, R. Rai, Mater. Lett. 304, 130616 (2021)

    Article  CAS  Google Scholar 

  31. W.E. Ghann, H. Kang, J. Uddin, F.A. Chowdhury, S.I. Khondaker, M. Moniruzzaman, M.H. Kabir, M.M. Rahman, ChemEngineering 3, 7 (2019)

    Article  CAS  Google Scholar 

  32. S. Roy, P. Ezati, J.-W. Rhim, ACS Appl. Polym. Mater. 3, 6437–6445 (2021)

    Article  CAS  Google Scholar 

  33. N. Gupta, G. Kaur, V. Sharma, R. Nagraik, M. Shandilya, J. Electroanal. Chem. 904, 115904 (2022)

    Article  CAS  Google Scholar 

  34. S. Perumbilavil, P. Sankar, T. Priya Rose, R. Philip, Appl. Phys. Lett. 107, 051104 (2015)

    Article  Google Scholar 

  35. L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T. Kulmala, A.C. Ferrari, Nano Lett. 11, 3190–3196 (2011)

    Article  PubMed  Google Scholar 

  36. B. Ma, R.D. Rodriguez, A. Ruban, S. Pavlov, E. Sheremet, Phys. Chem. Chem. Phys. 21, 10125–10134 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. M.A. Alrefae, A. Kumar, P. Pandita, A. Candadai, I. Bilionis, T.S. Fisher, AIP Adv. 7, 115102 (2017)

    Article  Google Scholar 

  38. D. Sridhar, S. Omanovic, J.-L. Meunier, Diam. Relat. Mater. 81, 70–76 (2018)

    Article  CAS  Google Scholar 

  39. G.A. Kaur, S. Kumar, S. Thakur, M. Shandilya, J. Mater. Sci. Mater. Electron. 32, 23631–23644 (2021)

    Article  CAS  Google Scholar 

  40. B.K. Gupta, V. Shanker, M. Arora, D. Haranath, Appl. Phys. Lett. 95, 073115 (2009)

    Article  Google Scholar 

  41. P.P. Paskov, P.O. Holtz, B. Monemar, J.M. Garcia, W.V. Schoenfeld, P.M. Petroff, Appl. Phys. Lett. 77, 812–814 (2000)

    Article  CAS  Google Scholar 

  42. X. He, D.L. White, A.A. Kapralov, V.E. Kagan, A. Star, Anal. Chem. 92(19), 12880–12890 (2020)

    Article  Google Scholar 

  43. M. Ali, A.S. Anjum, A. Bibi, S. Wageh, K.C. Sun, S.H. Jeong, Carbon (2022). https://doi.org/10.1016/j.carbon.2022.05.040

    Article  Google Scholar 

  44. K.K. Sadasivuni, K. Kannan, A.M. Abdullah, B. Kumar, 2D nanomaterials for CO2 conversion into chemicals and fuels (Royal Society of Chemistry, London, 2022)

    Book  Google Scholar 

  45. G.A. Kaur, S. Kumar, V. Sharma, I. Kainthla, S. Thakur, S. Thakur, R. Rai, M. Shandilya, Inorg. Chem. Commun. 151, 110644 (2023)

    Article  Google Scholar 

  46. K.K. Sadasivuni, S.M. Hegazy, A.A.M. Abdullah Aly, S. Waseem, K. Karthik, Chap 11 - polymers in electronics, in Polymer science and innovative applications. ed. by M.A.A. AlMaadeed, D. Ponnamma, M.A. Carignano (Elsevier, Amsterdam, 2020)

    Google Scholar 

Download references

Funding

Science and Engineering Research Board (SERB), Department of Science and Technology India, supported this work for providing the facilities and financial support to undertake the investigations. The section order no. of the project is (SPG/2021/004175).

Author information

Authors and Affiliations

Authors

Contributions

SK: Methodology, Writing- Original draft preparation, GAK: Methodology, Software, NK: Data Curation, Formal analysis, AG: Resources, Validation, MS: Investigation, Reviewing and Editing.

Corresponding author

Correspondence to Mamta Shandilya.

Ethics declarations

Conflict of interests

The authors confirm that there are no conflicts of interest and that the manuscript has not been published elsewhere, is not under editorial review for publication elsewhere, and is not being submitted simultaneously to another journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kaur, G.A., Kumari, N. et al. Surface Modification of Carbon Nanofiber with C20H38O11 Polymer by Spun Calcination Method. J Inorg Organomet Polym 34, 336–345 (2024). https://doi.org/10.1007/s10904-023-02827-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02827-1

Keywords

Navigation