Skip to main content
Log in

Effect of Modified Nanographene Oxide (mGO)/Carbon Nanotubes (CNTs) Hybrid Filler on the Cure, Mechanical and Swelling Properties of Silicone Rubber Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, modified nanographene oxide (mGO) and carbon nanotubes (CNTs) reinforced phenyl silicone rubber (PSR) composites were created and studied. The nanocomposites containing hybrid nanofillers were fabricated using a melt mixing technique and the morphology of the resulting nanocomposites was examined through field emission scanning electron microscopy. The synergistic impact of mGO and CNTs on the mechanical characteristics of the PSR hybrid composites was investigated. A notable enhancement in the cure, mechanical and swelling resistance properties is evident in the hybrid nanocomposites compared to those filled with individual mGO. The PSR hybrid composites were assessed for their tensile strength, elongation at break, 100% modulus, tear strength, hardness, rebound resilience, abrasion resistance, compression set, swelling resistance and microstructure. The micro-structural, mechanical and other properties of the nanocomposites are greatly influenced by the concentration of CNTs and mGO. In this study, the nanocomposites with 6 phr of mGO and 3 phr of CNTs exhibited an increase in tensile strength and abrasion resistance of 24% and 22% over the mGO filler filled composites and also displayed superior swelling resistance and tear strength. The formation of mGO–CNTs local filler networks can reasonably explain the synergistic reinforcement observed in PSR/mGO/CNTs nanocomposites. Furthermore, it has been observed that as the CNTs content in the nanocomposites increases, there is an additional improvement in mechanical properties and crosslink density. This enhancement can be attributed to the synergistic effect between mGO and CNTs, which arises from the formation of a physical and chemical network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

This published article contains all of the data that were created or evaluated during this project.

References

  1. G. Anand, S. Vishvanathperumal, Properties of SBR/NR blend: the effects of carbon black/silica (CB/SiO2) hybrid filler and silane coupling agent. Silicon 14(14), 9051–9060 (2022)

    Article  CAS  Google Scholar 

  2. K. Senthilvel, S. Vishvanathperumal, B. Prabu, J. Baruch, Studies on the morphology, cure characteristics and mechanical properties of acrylonitrile butadiene rubber with hybrid filler (carbon black/silica) composite. Polym. Polym. Compos. 24(7), 473–480 (2016)

    Article  CAS  Google Scholar 

  3. S.K. De, J.R. White (eds.), Rubber Technologist’s Handbook, vol. 1 (iSmithers Rapra Publishing, Shrewsbury, 2001)

  4. K.S. Novoselov, V.I. Fal′ ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490(7419), 192–200 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110(1), 132–145 (2010)

    Article  CAS  PubMed  Google Scholar 

  6. X. Liu, W. Kuang, B. Guo, Preparation of rubber/graphene oxide composites with in-situ interfacial design. Polymer 56, 553–562 (2015)

    Article  CAS  Google Scholar 

  7. X.Z. Tang, W. Li, Z.Z. Yu, M.A. Rafiee, J. Rafiee, F. Yavari, N. Koratkar, Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4, 6-didodecylamino-1, 3, 5-triazine. Carbon 49(4), 1258–1265 (2011)

    Article  CAS  Google Scholar 

  8. W. Yu, H. Xie, X. Wang, X. Wang, Highly efficient method for preparing homogeneous and stable colloids containing graphene oxide. Nanoscale Res. Lett. 6, 1–7 (2011)

    Google Scholar 

  9. Y. Huang, W. Yan, Y. Xu, L. Huang, Y. Chen, Functionalization of graphene oxide by two-step alkylation, in Chemical Synthesis and Applications of Graphene and Carbon Materials (2017), pp. 43–52

  10. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu, S. Zhu, Study on poly (methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 271(1–2), 395–400 (1999)

    Article  Google Scholar 

  11. V. Kumar, D.J. Lee, Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber. J. Appl. Polym. Sci. 134(4), 44407 (2017)

  12. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7), 1738–1746 (2009)

    Article  CAS  Google Scholar 

  13. Y.L. Liu, W.H. Chen, Y.H. Chang, Preparation and properties of chitosan/carbon nanotube nanocomposites using poly (styrene sulfonic acid)-modified CNTs. Carbohydr. Polym. 76(2), 232–238 (2009)

    Article  CAS  Google Scholar 

  14. R. Rastogi, R. Kaushal, S.K. Tripathi, A.L. Sharma, I. Kaur, L.M. Bharadwaj, Comparative study of carbon nanotube dispersion using surfactants. J. Colloid Interface Sci. 328(2), 421–428 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Q.S. Yang, X.Q. He, X. Liu, F.F. Leng, Y.W. Mai, The effective properties and local aggregation effect of CNT/SMP composites. Composites B 43(1), 33–38 (2012)

    Article  Google Scholar 

  16. M. Wong, M. Paramsothy, X.J. Xu, Y. Ren, S. Li, K. Liao, Physical interactions at carbon nanotube-polymer interface. Polymer 44(25), 7757–7764 (2003)

    Article  CAS  Google Scholar 

  17. V. Kumar, R.R. Wu, D.J. Lee, Morphological aspects of carbon nanofillers and their hybrids for actuators and sensors. Polym. Compos. 40(S1), E373–E382 (2019)

    Article  CAS  Google Scholar 

  18. J.A. Kim, D.G. Seong, T.J. Kang, J.R. Youn, Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10), 1898–1905 (2006)

    Article  CAS  Google Scholar 

  19. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, S. Lanka, The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A 42(3), 234–243 (2011)

    Article  Google Scholar 

  20. J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 41(9), 1471–1485 (2001)

    Article  CAS  Google Scholar 

  21. D. Ponnamma, K.K. Sadasivuni, C. Wan, S. Thomas, M.A.A. AlMa’adeed (eds.), Flexible and Stretchable Electronic Composites (Springer, New York, 2015)

    Google Scholar 

  22. S. Ganguly, P. Bhawal, R. Ravindren, N.C. Das, Polymer nanocomposites for electromagnetic interference shielding: a review. J. Nanosci. Nanotechnol. 18(11), 7641–7669 (2018)

    Article  CAS  Google Scholar 

  23. A.Y. Coran, R. Patel, Rubber-thermoplastic compositions. Part II. NBR-nylon thermoplastic elastomeric compositions. Rubber Chem. Technol. 53(4), 781–794 (1980)

    Article  CAS  Google Scholar 

  24. P.J. Halley, M.E. Mackay, Chemorheology of thermosets—an overview. Polym. Eng. Sci. 36(5), 593–609 (1996)

    Article  CAS  Google Scholar 

  25. R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. M. Cadek, J.N. Coleman, V. Barron, K. Hedicke, W.J. Blau, Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81(27), 5123–5125 (2002)

    Article  CAS  Google Scholar 

  27. F.H. Gojny, M.H.G. Wichmann, U. Köpke, B. Fiedler, K. Schulte, Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64(15), 2363–2371 (2004)

    Article  CAS  Google Scholar 

  28. E.L. Warrick, O.R. Pierce, K.E. Polmanteer, J.C. Saam, Silicone elastomer developments 1967–1977. Rubber Chem. Technol. 52(3), 437–525 (1979)

    Article  CAS  Google Scholar 

  29. J. Rault, J. Marchal, P. Judeinstein, P.A. Albouy, Stress-induced crystallization and reinforcement in filled natural rubbers: 2H NMR study. Macromolecules 39(24), 8356–8368 (2006)

    Article  CAS  Google Scholar 

  30. J.L. Valentín, P. Posadas, A. Fernández-Torres, M.A. Malmierca, L. González, W. Chassé, K. Saalwachter, Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 43(9), 4210–4222 (2010)

    Article  Google Scholar 

  31. H. Cochrane, C.S. Lin, The influence of fumed silica properties on the processing, curing and reinforcement properties of silicone rubber. Rubber Chem. Technol. 66(1), 48–60 (1993)

    Article  CAS  Google Scholar 

  32. V. Kumar, R.R. Wu, Q.Y. Zhen, D.J. Lee, Conductive films of sonicated multiwall carbon nanotubes on stretchable substrates. Polym. Int. 67(11), 1502–1510 (2018)

    Article  CAS  Google Scholar 

  33. M. Leineweber, G. Pelz, M. Schmidt, H. Kappert, G. Zimmer, New tactile sensor chip with silicone rubber cover. Sens. Actuators A 84(3), 236–245 (2000)

    Article  CAS  Google Scholar 

  34. J.Y. Lee, V. Kumar, X.W. Tang, D.J. Lee, Mechanical and electrical behavior of rubber nanocomposites under static and cyclic strain. Compos. Sci. Technol. 142, 1–9 (2017)

    Article  CAS  Google Scholar 

  35. C.W. Huang, M.G. Mohamed, C.Y. Zhu, S.W. Kuo, Functional supramolecular polypeptides involving π–π stacking and strong hydrogen-bonding interactions: a conformation study toward carbon nanotubes (CNTs) dispersion. Macromolecules 49(15), 5374–5385 (2016)

    Article  CAS  Google Scholar 

  36. L. Zhang, Y. Tao, P. Xiao, L. Dai, L. Song, Y. Huang, J. Zhang, S.W. Kuo, T. Chen, Air/water interfacial formation of “clean” tiny AuNPs anchored densely on CNT film for electrocatalytic alcohol oxidation. Adv. Mater. Interfaces 4(6), 1601105 (2017)

    Article  Google Scholar 

  37. S. Wang, P. Xiao, Y. Liang, J. Zhang, Y. Huang, S. Wu, S.W. Kuo, T. Chen, Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. J. Mater. Chem. C 6(19), 5140–5147 (2018)

    Article  CAS  Google Scholar 

  38. V. Kumar, G. Lee, K. Singh, J. Choi, D.J. Lee, Structure-property relationship in silicone rubber nanocomposites reinforced with carbon nanomaterials for sensors and actuators. Sens. Actuators A 303, 111712 (2020)

    Article  CAS  Google Scholar 

  39. V. Kumar, D.J. Lee, High-actuation displacement with high flexibility for silicone rubber and few layer graphene composites. Sens. Actuators A 309, 111956 (2020)

    Article  CAS  Google Scholar 

  40. K. Cao, B. Li, Y. Jiao, Y. Lu, L. Wang, Y. Guo, P. Dai, Enhancement of thermal and mechanical properties of silicone rubber with γ-ray irradiation-induced polysilane-modified graphene oxide/carbon nanotube hybrid fillers. RSC Adv. 11(53), 33354–33360 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H.S. Kim, S.K. Lee, M. Wang, J. Kang, Y. Sun, J.W. Jung, K. Kim, S.M. Kim, J.D. Nam, J. Suhr, Experimental investigation on 3D graphene-CNT hybrid foams with different interactions. Nanomaterials 8(9), 694 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  42. S. Yaragalla, B. Sindam, J. Abraham, K.J. Raju, N. Kalarikkal, S. Thomas, Fabrication of graphite-graphene-ionic liquid modified carbon nanotubes filled natural rubber thin films for microwave and energy storage applications. J. Polym. Res. 22, 1–10 (2015)

    Google Scholar 

  43. L. Valentini, S.B. Bon, M. Hernández, M.A. López-Manchado, N.M. Pugno, Nitrile butadiene rubber composites reinforced with reduced graphene oxide and carbon nanotubes show superior mechanical, electrical and icephobic properties. Compos. Sci. Technol. 166, 109–114 (2018)

    Article  CAS  Google Scholar 

  44. X. Liu, L.Y. Wang, L.F. Zhao, H.F. He, X.Y. Shao, G.B. Fang, Z.G. Wan, R.C. Zeng, Research progress of graphene-based rubber nanocomposites. Polym. Compos. 39(4), 1006–1022 (2018)

    Article  CAS  Google Scholar 

  45. H. Yang, X. Yao, L. Yuan, L. Gong, Y. Liu, Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 11(2), 578–586 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. V. Aravinth, V. Navaneethakrishnan, S. Vishvanathperumal, G. Gurumoorthi, Effect of modified nanographene oxide (mGO)/carbon nanotubes (CNTs) hybrid filler on the cure, mechanical and swelling properties of silicone rubber composites (2023)

  47. S. Vishvanathperumal, S. Gopalakannan, Effects of the nanoclay and crosslinking systems on the mechanical properties of ethylene-propylene-diene monomer/styrene butadiene rubber blends nanocomposite. Silicon 11, 117–135 (2019)

    Article  CAS  Google Scholar 

  48. Z. Liu, Y. Wang, X. Zhang, Y. Xu, Y. Chen, J. Tian, Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 94(2), 021902 (2009)

    Article  Google Scholar 

  49. J. Bai, X. Liao, E. Huang, Y. Luo, Q. Yang, G. Li, Control of the cell structure of microcellular silicone rubber/nanographite foam for enhanced mechanical performance. Mater. Design 133, 288–298 (2017)

    Article  CAS  Google Scholar 

  50. L. Gan, S. Shang, S.X. Jiang, Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Compos. Part B 84, 294–300 (2016)

    Article  CAS  Google Scholar 

  51. K. An, S. Peng, C. Yang, Y. Qing, C. Hu, L. Wang, C. Liu, Covalent modification of graphene oxide by 4, 4′-methylenebis (phenyl isocyanate) to enhance corrosion resistance of polystyrene coating. Colloid Polym. Sci. 297, 839–848 (2019)

    Article  CAS  Google Scholar 

  52. S. Vishvanathperumal, G. Anand, Effect of nanoclay/nanosilica on the mechanical properties, abrasion and swelling resistance of EPDM/SBR composites. Silicon 12(8), 1925–1941 (2020)

    Article  CAS  Google Scholar 

  53. S. Vishvanathperumal, G. Anand, Effect of nanosilica on the mechanical properties, compression set, morphology, abrasion and swelling resistance of sulphur cured EPDM/SBR composites. Silicon 14(7), 3523–3534 (2022)

    Article  CAS  Google Scholar 

  54. R. Sundar, S.K. Mohan, S. Vishvanathperumal, Effect of Surface modified halloysite nanotubes (mHNTs) on the mechanical properties and swelling resistance of EPDM/NBR nanocomposites. Polym. Korea 46(6), 728–743 (2022)

    Article  CAS  Google Scholar 

  55. S. Vishvanathperumal, S. Gopalakannan, Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polym. Korea 41(3), 433–442 (2017)

    Article  CAS  Google Scholar 

  56. K. Ragupathy, G. Prabaharan, N. Pragadish, S. Vishvanathperumal, Effect of silica nanoparticles and modified silica nanoparticles on the mechanical and swelling properties of EPDM/SBR blend nanocomposites (2023)

  57. R.K. Das, K. Ragupathy, T.S. Kumar, S. Vishvanathperumal, Effect of halloysite nanotubes (HNTs) on mechanical properties of EPDM/NBR blend-nanocomposites. Polym. Korea 47(2), 221–232 (2023)

    Article  CAS  Google Scholar 

  58. S. Dhanasekar, S. Baskar, S. Vishvanathperumal, Halloysite nanotubes effect on cure and mechanical properties of EPDM/NBR nanocomposites. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02754-1

    Article  Google Scholar 

  59. Y. Li, M. Li, M. Pang, S. Feng, J. Zhang, C. Zhang, Effects of multi-walled carbon nanotube structures on the electrical and mechanical properties of silicone rubber filled with multi-walled carbon nanotubes. J. Mater. Chem. C 3(21), 5573–5579 (2015)

    Article  CAS  Google Scholar 

  60. M.M. Saatchi, A. Shojaei, Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing. Mater. Sci. Eng. A 528(24), 7161–7172 (2011)

    Article  CAS  Google Scholar 

  61. L. Bai, Y. Bai, J. Zheng, Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane. J. Mater. Sci. 52, 7516–7529 (2017)

    Article  CAS  Google Scholar 

  62. A. Katihabwa, W. Wang, Y. Jiang, X. Zhao, Y. Lu, L. Zhang, Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J. Reinf. Plast. Compos. 30(12), 1007–1014 (2011)

    Article  CAS  Google Scholar 

  63. K. Pal, R. Rajasekar, D.J. Kang, Z.X. Zhang, S.K. Pal, C.K. Das, J.K. Kim, Effect of fillers on natural rubber/high styrene rubber blends with nano silica: morphology and wear. Mater. Design 31(2), 677–686 (2010)

    Article  CAS  Google Scholar 

  64. J.F. Fu, L.Y. Chen, H. Yang, Q.D. Zhong, L.Y. Shi, W. Deng, X. Dong, Y. Chen, G.Z. Zhao, Mechanical properties, chemical and aging resistance of natural rubber filled with nano-Al2O3. Polym. Compos. 33(3), 404–411 (2012)

    Article  CAS  Google Scholar 

  65. K. Kueseng, K.I. Jacob, Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes. Eur. Polym. J. 42(1), 220–227 (2006)

    Article  CAS  Google Scholar 

  66. C. Lv, H. Wang, Z. Liu, C. Wang, H. Li, Y. Zhao, Y. Zhu, A fluorine-free superhydrophobic PPS composite coating with high thermal stability, wear resistance, corrosion resistance. Prog. Org. Coat. 110, 47–54 (2017)

    Article  CAS  Google Scholar 

  67. Q. Wang, F. Yang, Q. Yang, J. Chen, H. Guan, Study on mechanical properties of nano-Fe3O4 reinforced nitrile butadiene rubber. Mater. Design 31(2), 1023–1028 (2010)

    Article  CAS  Google Scholar 

  68. D. Xu, J. Karger-Kocsis, Z. Major, A.R. Thomann, Unlubricated rolling wear of HNBR/FKM/MWCNT compounds against steel. J. Appl. Polym. Sci. 112(3), 1461–1470 (2009)

    Article  CAS  Google Scholar 

  69. S. Vishvanathperumal, G. Anand, Effect of nanosilica and crosslinking system on the mechanical properties and swelling resistance of EPDM/SBR nanocomposites with and without TESPT. Silicon 13(10), 3473–3497 (2021)

    Article  CAS  Google Scholar 

  70. V. Arrighi, S. Gagliardi, J.S. Higgins, A. Triolo, J.-M. Zanotti, Quasielastic Neutron Scattering as a Probe of Molecular Motion in polymer-filler Systems (E-MRS Spring Meeting, 2002). Strasbourg (France). N-15.

  71. S. Vishvanathperumal, V. Navaneethakrishnan, S. Gopalakannan, The effect of nanoclay and hybrid filler on curing characteristics, mechanical properties and swelling resistance of ethylene-vinyl acetate/styrene butadiene rubber blend composite. J. Adv. Microsc. Res. 13(4), 469–476 (2018)

    Article  Google Scholar 

  72. J. Persello, Designing nanostructured particular fillers for elastomers. Role of nanostructure and polymer filler interactions in rubber reinforcement. E-MRS Spring Meeting 2002. Strasbourg (France). N–8

  73. P.S. Ganeche, P. Balasubramanian, S. Vishvanathperumal, Halloysite nanotubes (HNTs)-filled ethylene-propylene-diene monomer/styrene-butadiene rubber (EPDM/SBR) composites: mechanical, swelling and morphological properties. Silicon 14, 6611–6620 (2022)

    Article  CAS  Google Scholar 

  74. M. Zaborski, J.B. Donnet, 2003, April. Activity of fillers in elastomer networks of different structure. In Macromolecular Symposia. 194, 1, 87–100). Weinheim: WILEY-VCH Verlag

    Google Scholar 

  75. B. Davies, Longest serving polymer. Rubber Dev. 41(4), 102–109 (1988)

    Google Scholar 

  76. M.S. Ravi Theja, N. Kilari, S. Vishvanathperumal, V. Navaneethakrishnan, Modeling tensile modulus of nanoclay-filled ethylene–propylene–diene monomer/styrene–butadiene rubber using composite theories. J. Rubber Res. 24(5), 847–856 (2021)

    Article  CAS  Google Scholar 

  77. F.E. Ngolemasango, M. Bennett, J. Clarke, Degradation and life prediction of a natural rubber engine mount compound. J. Appl. Polym. Sci. 110(1), 348–355 (2008)

    Article  CAS  Google Scholar 

  78. H.W. Chou, J.S. Huang, Effects of ultraviolet irradiation on the static and dynamic properties of neoprene rubbers. J. Appl. Polym. Sci. 110(5), 2907–2913 (2008)

    Article  CAS  Google Scholar 

  79. H.W. Chou, J.S. Huang, Effects of cyclic compression and thermal aging on dynamic properties of neoprene rubber bearings. J. Appl. Polym. Sci. 107(3), 1635–1641 (2008)

    Article  CAS  Google Scholar 

  80. H.W. Chou, J.S. Huang, S.T. Lin, Effects of thermal aging on fatigue of carbon black–reinforced EPDM rubber. J. Appl. Polym. Sci. 103(2), 1244–1251 (2007)

    Article  CAS  Google Scholar 

  81. R.L. Clough, K.T. Gillen, Degradation Mechanisms and Accelerated Aging test Design (No. SAND-84-2115C; CONF-850417-6) (Sandia National Labs, Albuquerque, 1985)

    Google Scholar 

  82. L. Jiesheng, W. Shaopeng, E. Dong, Effect of coupling agent as integral blend additive on silicone rubber sealant. J. Appl. Polym. Sci. 128(4), 2337–2343 (2013)

    Article  Google Scholar 

  83. K. Brüning, In-situ Structure Characterization of Elastomers During Deformation and Fracture (Springer, Berlin, 2014)

    Book  Google Scholar 

  84. R.P. Brown, Physical Testing of Rubbers, 3rd edn. (Chapman and Hall, London, 1996), p.74

    Book  Google Scholar 

  85. J. Clarke, E.F. Ngolemasango, M. Bennett, Kinetics of the effect of ageing on tensile properties of a natural rubber compound. J. Appl. Polym. Sci 102, 3732–3740 (2006)

    Article  Google Scholar 

  86. S. Vishvanathperumal, V. Navaneethakrishnan, G. Anand, S. Gopalakannan, Evaluation of crosslink density using material constants of ethylene-propylene-diene monomer/styrene-butadiene rubber with different nanoclay loading: finite element analysis-simulation and experimental. Adv. Sci. Eng. Med. 12(5), 632–642 (2020)

    Article  CAS  Google Scholar 

  87. J. Wu, J. Dong, Y. Wang, B.K. Gond, Thermal oxidation ageing effects on silicone rubber sealing performance. Polym. Degrad. Stab. 135, 43–53 (2017)

    Article  CAS  Google Scholar 

  88. L. Bernardi, R. Hopf, D. Sibilio, A. Ferrari, A.E. Ehret, E. Mazza, On the cyclic deformation behavior, fracture properties and cytotoxicity of silicone-based elastomers for biomedical applications. Polym. Test. 60, 117–123 (2017)

    Article  CAS  Google Scholar 

  89. K. Sakulkaew, A.G. Thomas, J.J.C. Busfield, The effect of the rate of strain on tearing in rubber. Polym. Test. 30(2), 163–172 (2011)

    Article  CAS  Google Scholar 

  90. R.P. Brown, G. Soulagnet, Microhardness profiles on aged rubber compounds. Polym. Test. 20(3), 295–303 (2001)

    Article  CAS  Google Scholar 

  91. C.M. Blow, C. Hepburn, 1981. 34. Rubber Technology and Manufacture

  92. C.K. Radhakrishnan, R. Alex, G. Unnikrishnan, Thermal, ozone and gamma ageing of styrene butadiene rubber and poly (ethylene-co-vinyl acetate) blends. Polym. Degrad. Stab. 91(4), 902–910 (2006)

    Article  CAS  Google Scholar 

  93. S. Vishvanathperumal, S. Gopalakannan, Reinforcement of ethylene vinyl acetate with carbon black/silica hybrid filler composites. Appl. Mech. Mater. 852, 16–22 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to E.G.S. Pillay Engineering College, Nagapattinam and SA Engineering college Chennai, Tamilnadu, India for their kind support in providing the time for research for academic interest.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

VA—Done an experimental work and characterization. SV and VN—wrote the main manuscript text and prepared figures and tables as well as removal of plagiarism.  GG—Done an experimental work and characterization. All authors reviewed the manuscript.

Corresponding author

Correspondence to V. Navaneethakrishnan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

The writers state that participation is not opposed.

Consent for Publication

The authors say they have no objections about their consent being published.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aravinth, V., Navaneethakrishnan, V., Vishvanathperumal, S. et al. Effect of Modified Nanographene Oxide (mGO)/Carbon Nanotubes (CNTs) Hybrid Filler on the Cure, Mechanical and Swelling Properties of Silicone Rubber Composites. J Inorg Organomet Polym 34, 282–301 (2024). https://doi.org/10.1007/s10904-023-02818-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02818-2

Keywords

Navigation