Skip to main content
Log in

Functionalized Layered Double Hydroxide-Zeolitic Imidazolate Nanoreactor with Active Sites of Multi-source Copper (II) as an Efficient Nanocatalyst for Huisgen and Pechmann Reactions

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this research, a controlled route for straightforward synthesizing novel microporous nanocomposites of ZIF-8 type metal-organic frameworks material incorporated with copper (II) was synthesized by the sol–gel method. The nanocatalyst was characterized using SEM, XRD, FT-IR, EDX, TGA and BET methods. The prepared nanocatalyst with truncated rhombic dodecahedron morphology and average particle size around 270 nm shows the BET surface area, mean pore size and total pore volume 1767 m2 g−1, 1.6 nm and 0.7 cm3 g−1, respectively. The high surface area, suitable pore size, having a layered structure, and mobility of the active centres in the ionic liquid units make the active sites of the synthesized nanocatalyst more accessible for interaction with organic compounds. The synthesized CuZIF@CuLDH/IMIL-Cu2+ nanocatalyst was applied as a robust nanocatalyst for the Huisgen and Pechmann reactions for the synthesis of the triazole and coumarin derivatives with excellent yields (> 80%). The high catalytic capacity and good reusability of the nanocatalyst suggest that it can be applied as new nanocatalyst showing attractive potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Lauria, R. Delisi, F. Mingoia, A. Terenzi, A. Martorana, G. Barone, A.M. Almerico, 1, 2, 3-Triazole in heterocyclic compounds, endowed with biological activity, through 1, 3-dipolar cycloadditions. Eur. J. Org. Chem. 16, 3289–3306 (2014). https://doi.org/10.1002/ejoc.201301695

    Article  CAS  Google Scholar 

  2. D. Dheer, V. Singh, R. Shankar, Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem. 71, 30–54 (2017). https://doi.org/10.1016/j.bioorg.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  3. K. Bozorov, J. Zhao, H.A. Aisa, 1, 2, 3-triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem. 27, 3511–3531 (2019). https://doi.org/10.1016/j.bmc.2019.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J.E. Hein, V.V. Fokin, Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper (I) acetylides. Chem. Soc. Rev. 39, 1302–1315 (2010). https://doi.org/10.1039/B904091A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Q. Wang, T.R. Chan, R. Hilgraf, V.V. Fokin, K.B. Sharpless, M.G. Finn, Bioconjugation by copper (I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125, 3192–3193 (2003). https://doi.org/10.1021/ja021381e

    Article  CAS  PubMed  Google Scholar 

  6. H. Struthers, T.L. Mindt, R. Schibli, Metal chelating systems synthesized using the copper (I) catalyzed azide-alkyne cycloaddition. Dalton Trans. 39, 675–696 (2010). https://doi.org/10.1039/B912608B

    Article  CAS  PubMed  Google Scholar 

  7. Z.J. Zheng, D. Wang, Z. Xu, L.W. Xu, Synthesis of bi-and bis-1, 2, 3-triazoles by copper-catalyzed Huisgen cycloaddition: a family of valuable products by click chemistry. Beilstein J. Org. Chem. 11, 2557–2576 (2015). https://doi.org/10.3762/bjoc.11.276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J. Huo, H. Hu, M. Zhang, X. Hu, M. Chen, D. Chen, J. Liu, G. Xiao, Y. Wang, Z. Wen, A mini review of the synthesis of poly-1, 2, 3-triazole-based functional materials, RSC. RSC Adv. 7, 2281–2287 (2017). https://doi.org/10.1039/C6RA27012C

    Article  CAS  Google Scholar 

  9. M. Meldal, F. Diness, Recent fascinating aspects of the CuAAC click reaction. Trends Chem. 2, 569–584 (2020). https://doi.org/10.1016/j.trechm.2020.03.007

    Article  CAS  Google Scholar 

  10. L. Bahsis, H.B. El Ayouchia, H. Anane, A. Pascual-Álvarez, G. De Munno, M. Julve, S.E. Stiriba, A reusable polymer-supported copper (I) catalyst for triazole click reaction on water: an experimental and computational study. Appl. Organomet. Chem. 33, e4669 (2019). https://doi.org/10.1002/aoc.4669

    Article  CAS  Google Scholar 

  11. M. Nasrollahzadeh, S.M. Sajadi, Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. J. Colloid Interface Sci. 457, 141–147 (2015). https://doi.org/10.1016/j.jcis.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  12. R. González-Olvera, C.I. Urquiza-Castro, G.E. Negrón-Silva, D. Ángeles-Beltrán, L. Lomas-Romero, A. Gutiérrez-Carrillo, V.H. Lara, R. Santillan, J.A. Morales-Serna, Cu–Al mixed oxide catalysts for azide–alkyne 1, 3-cycloaddition in ethanol–water. RSC Adv. 6, 63660–63666 (2016). https://doi.org/10.1039/C6RA10097J

    Article  CAS  Google Scholar 

  13. H. Paghandeh, M.K. Foumeshi, H. Saeidian, Regioselective synthesis and DFT computational studies of novel β-hydroxy-1, 4-disubstituted-1, 2, 3-triazole-based benzodiazepinediones using click cycloaddition reaction. Struct. Chem. 32, 1279–1287 (2021). https://doi.org/10.1007/s11224-020-01698-3

    Article  CAS  Google Scholar 

  14. M. Rajabzadeh, R. Khalifeh, H. Eshghi, M. Sorouri, Design and preparation of hallow mesoporous silica spheres include CuO and its catalytic performance for synthesis of 1, 2, 3-triazole compounds via the click reaction in water. Catal. Lett. 149, 1125–1134 (2019). https://doi.org/10.1007/s10562-019-02666-1

    Article  CAS  Google Scholar 

  15. G. Li, S. Huang, K. Li, N. Zhu, B. Zhao, Q. Zhong, Z. Zhang, D. Ge, D. Wang, Near-infrared responsive Z-scheme heterojunction with strong stability and ultra-high quantum efficiency constructed by lanthanide-doped glass. Appl. Catal. B Environ. 311, 121363 (2022). https://doi.org/10.1016/j.apcatb.2022.121363

    Article  CAS  Google Scholar 

  16. Z. Lei, W. Hengliang, L. Zhang, J. Yang, W. Qi, A study on the catalytic performance of the ZrO2@γ-Al2O3 hollow sphere catalyst for COS hydrolysis. New. J. Chem. 15, 7070–7083 (2023). https://doi.org/10.1039/D2NJ04970H

    Article  Google Scholar 

  17. X. Feng, L. Xia, Z. Jiang, M. Tian, S. Zhang, C. He, Dramatically promoted toluene destruction over Mn@Na-Al2O3@Al monolithic catalysts by ce incorporation: oxygen vacancy construction and reaction mechanism. Fuel 326, 125051 (2022). https://doi.org/10.1016/j.fuel.2022.125051

    Article  CAS  Google Scholar 

  18. V.V. Rostovtsev, L.G. Green, V.V. Fokin, K.B. Sharpless, A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. 114(14), 2708–2711 (2022)https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

    Article  Google Scholar 

  19. A.H. Leilan, M. Babazadeh, M. Hekmati, E. Ghasemi, Synthesis of ionic liquid modified Cu-doped layered double hydroxide magnetic as a novel nanocatalyst for azide–alkyne cycloaddition reactions. Inorg. Chem. Commun. 141, 109566–109569 (2022). https://doi.org/10.1016/j.inoche.2022.109566

    Article  CAS  Google Scholar 

  20. F. Pourhassan, H. Eshghi, Novel hybrid thioamide ligand supported copper nanoparticles on SBA-15: a copper rich robust nanoreactor for green synthesis of triazoles and tetrazoles in water medium. Catal. Lett. 150, 1287–1300 (2020). https://doi.org/10.1007/s10562-019-03031-y

    Article  CAS  Google Scholar 

  21. K. Qiu, Y. Shu, J. Zhang, L. Gao, G. Xiao, Effective and stable zeolite imidazole framework-supported copper nanoparticles (Cu/ZIF-8) for glycerol to lactic acid. Catal. Lett. 152, 172–186 (2022). https://doi.org/10.1007/s10562-021-03610-y

    Article  CAS  Google Scholar 

  22. F. Godarzbod, Z. Mirjafary, H. Saeidian, M. Rouhani, Highly efficient synthesis of silica-coated magnetic nanoparticles modified with iminodiacetic acid applied to synthesis of 1, 2, 3‐triazoles. Appl. Organomet. Chem. 35, e6132 (2021). https://doi.org/10.1002/aoc.6132

    Article  CAS  Google Scholar 

  23. H. Saeidian, S.V. Khajeh, Z. Mirjafary, B. Eftekhari-Sis, Immobilized copper nanoparticles on nitrogen-rich porous activated carbon from egg white biomass: a robust hydrophilic–hydrophobic balance catalyst for click reaction. RSC Adv. 8, 38801–38807 (2018). https://doi.org/10.1039/C8RA08376B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. M.T. De Martino, L.K. Abdelmohsen, F.P. Rutjes, J.C. van Hest, Nanoreactors for green catalysis. Beilstein J. Org. Chem. 14, 716–733 (2018). https://doi.org/10.3762/bjoc.14.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H. Chen, K. Shen, Q. Mao, J. Chen, Y. Li, Nanoreactor of MOF-derived yolk–shell Co@ C–N: precisely controllable structure and enhanced catalytic activity. ACS Catal. 8, 1417–1426 (2018). https://doi.org/10.1021/acscatal.7b03270

    Article  CAS  Google Scholar 

  26. H. Mollabagher, S. Taheri, M. Majid Mojtahedi, S. Seyedmousavi, Cu-metal organic frameworks (Cu-MOF) as an environment-friendly and economical catalyst for one pot synthesis of tacrine derivatives. RSC Adv. 10, 1995–2003 (2020). https://doi.org/10.1039/C9RA10111J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S.A. Miners, M.W. Fay, M. Baldoni, E. Besley, A.N. Khlobystov, G.A. Rance, Steric and electronic control of 1, 3-dipolar cycloaddition reactions in carbon nanotube nanoreactors. J. Phys. Chem. C 123, 6294–6302 (2019). https://doi.org/10.1021/acs.jpcc.9b01190

    Article  CAS  Google Scholar 

  28. F. Pazoki, M. Shamsayei, S. Bagheri, A. Heydari, Ultrasonic synthesis and characterization of organic–inorganic nafion/layered double hydroxide nanohybrids and the application in Ritter reaction. J. Inorg. Organomet. Polym. 31, 1451–1460 (2021). https://doi.org/10.1007/s10904-018-1048-8

    Article  CAS  Google Scholar 

  29. E.H. Mourid, M. Lakraimi, M.A. Legrouri, Removal and release of the 2,4,5-trichlorophenoxyacetic acid herbicide from wastewater by layered double hydroxides. J. Inorg. Organomet. Polym. 31, 2116–2128 (2021). https://doi.org/10.1007/s10904-020-01845-7

    Article  CAS  Google Scholar 

  30. E. Afzali, Z. Mirjafary, A. Akbarzadeh, H. Saeidian, Complexation of copper ion-containing immobilized ionic liquid in designed hierarchical-functionalized layered double hydroxide nanoreactor for azide–alkyne cycloaddition reaction. Inorg. Chem. Commun. 132, 108858–108866 (2021). https://doi.org/10.1016/j.inoche.2021.108858

    Article  CAS  Google Scholar 

  31. Z.Z. Yang, C. Zhang, G.M. Zeng, X.F. Tan, H. Wang, D.L. Huang, K.H. Yang, J.J. Wei, C. Ma, K. Nie, A design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: a review. J. Mater. Chem. 8, 4141–4173 (2020). https://doi.org/10.1039/C9TA13522G

    Article  CAS  Google Scholar 

  32. J. Huo, H. Wei, L. Fu, C. Zhao, C. He, Highly active Fe36Co44 bimetallic nanoclusters catalysts for hydrolysis of ammonia borane: the first-principles study. Chin. Chem. Lett. 34, 107261 (2023). https://doi.org/10.1016/j.cclet.2022.02.066

    Article  CAS  Google Scholar 

  33. B. Liu, M. Zhang, J. Yang, M. Zhu, Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction. Chin. Chem. Lett. 33, 4679–4682 (2022). https://doi.org/10.1016/j.cclet.2022.01.025

    Article  CAS  Google Scholar 

  34. Q. Huang, Y. Zhang, W. Zhou, X. Huang, Y. Chen, X. Tan, T. Yu, Amorphous molybdenum sulfide mediated EDTA with multiple active sites to boost heavy metal ions removal. Chin. Chem. Lett. 32, 2797–2802 (2021). https://doi.org/10.1016/j.cclet.2020.12.020

    Article  CAS  Google Scholar 

  35. P. Gu, S. Zhang, X. Li, X. Wang, T. Wen, R. Jehan, A. Alsaedi, T. Hayat, Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 240, 493–505 (2018). https://doi.org/10.1016/j.envpol.2018.04.136

    Article  CAS  PubMed  Google Scholar 

  36. N. Chen, D. Wang, C. Long, Y. Li, C. Lu, F. Wang, H. Zhu, Magnetic field-oriented ferroferric oxide/poly (2, 6-dimethyl-1, 4-phenylene oxide) hybrid membranes for anion exchange membrane applications. Nanoscale 10, 18680–18689 (2018). https://doi.org/10.1039/C8NR06048G

    Article  CAS  PubMed  Google Scholar 

  37. M. Duan, S. Liu, Q. Jiang, X. Guo, J. Zhang, S. Xiong, Recent progress on preparation and applications of layered double hydroxides. Chin. Chem. Lett. 33, 4428–4436 (2022)

    Article  CAS  Google Scholar 

  38. Y. Zhu, M. Yang, Z. Zhang, Z. An, J. Zhang, X. Shu, J. He, NiCu bimetallic catalysts derived from layered double hydroxides for hydroconversion of n-heptane. Chin. Chem. Lett. 33, 2069–2072 (2022)

    Article  CAS  Google Scholar 

  39. A. Schejn, A. Aboulaich, L. Balan, V. Falk, J. Lalev´ee, G. Medjahdi, L. Aranda, K. Mozet, R. Schneider, Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal. Sci. Technol. 5, 1829–1839 (2015). https://doi.org/10.1039/C4CY01505C

    Article  CAS  Google Scholar 

  40. A.A. Khandar, A. Sheikhy, M. Amini, A. Ellern, L.K. Woo, Synthesis, characterization and catalytic properties of a new binuclear copper(II) complex in the azide–alkyne cycloaddition. Polyhedron 188, 114698 (2020). https://doi.org/10.1016/j.poly.2020.114698

    Article  CAS  Google Scholar 

  41. S. Kangari, I. Yavari, B. Maasoumi, Synthesis and heterogeneous catalytic activity of covalently immobilized hexamine cation as a magnetically-recoverable nanocatalyst. J. Iran. Chem. Soc. 12, 1771–1779 (2015). https://doi.org/10.1007/s13738-015-0652-6

    Article  CAS  Google Scholar 

  42. M.M. Abolghasemi, V. Yousefi, M. Piryaei, Double-charged ionic liquid-functionalized layered double hydroxide nanomaterial as a new fiber coating for solid-phase microextraction of phenols. Microchim.Acta 182, 2155–2164 (2015). https://doi.org/10.1007/s00604-015-1553-1

    Article  CAS  Google Scholar 

  43. K. Thiel, T. Klamroth, P. Straucha, A. Taubert, On the interaction of ascorbic acid and the tetrachlorocuprate ion [CuCl4]2 in CuCl nanoplatelet formation from an ionic liquid precursor (ILP). Phys. Chem. Chem. Phys. 13, 13537–13543 (2011). https://doi.org/10.1039/C1CP20648F

    Article  CAS  PubMed  Google Scholar 

  44. E. Mansouri, V. Tarhriz, V. Yousefi, A. Dilmaghani, Intercalation and release of an anti-inflammatory drug into designed three-dimensionally layered double hydroxide nanostructure via calcination–reconstruction route. Adsorption 26, 835–842 (2020). https://doi.org/10.1007/s10450-020-00217-4

    Article  CAS  Google Scholar 

  45. H.J. Kim, J.E. Ahn, S. Haam, Y.G. Shul, S.Y. Song, T. Tatsumi, Synthesis and characterization of mesoporous Fe/SiO2 for magnetic drug targeting. J. Mater. Chem. 16, 1617–1621 (2006). https://doi.org/10.1039/B514433G

    Article  CAS  Google Scholar 

  46. S. Saghir, Z. Xiao, S. Red, Hierarchical mesoporous ZIF-67@ LDH for efficient adsorption of aqueous methyl orange and alizarine red S. Powder Technol. 377, 453–463 (2021). https://doi.org/10.1016/j.powtec.2020.09.006

    Article  CAS  Google Scholar 

  47. B. Han, G. Cheng, E. Zhang, L. Zhang, X. Wang, Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta 263, 391–399 (2018). https://doi.org/10.1016/j.electacta.2017.12.175

    Article  CAS  Google Scholar 

  48. Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale 5, 11770–11775 (2013). https://doi.org/10.1039/C3NR03829G

    Article  CAS  PubMed  Google Scholar 

  49. B. Karami, M. Kiani, M.A. Hoseini, In (OTf)3 as a powerful and recyclable catalyst for Pechmann condensation without solvent. Chin. J. Catal. 35, 1206–1211 (2014). https://doi.org/10.1016/S1872-2067(14)60090-5

    Article  CAS  Google Scholar 

  50. A. Rahmatpour, S. Mohammadian, An environmentally friendly, chemoselective, and efficient protocol for the preparation of coumarin derivatives by Pechman condensation reaction using new and reusable heterogeneous Lewis acid catalyst polystyrene-supported GaCl3. C. R. Chim. 16, 271–278 (2013). https://doi.org/10.1016/j.crci.2013.01.006

    Article  CAS  Google Scholar 

  51. Z. Abbasi, S. Rezayati, M. Bagheri, R. Hajinasiri, Preparation of a novel, efficient, and recyclable magnetic catalyst, γ-Fe2O3@ HAp-Ag nanoparticles, and a solvent-and halogen-free protocol for the synthesis of coumarin derivatives. Chin. Chem. Lett. 28, 75–82 (2017). https://doi.org/10.1016/j.cclet.2016.06.022

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

EA: Formal analysis, investigation, resources, validation, visualization, writing—review and editing. ZM: Conceptualization, formal analysis, investigation, resources, validation, visualization, writing—review and editing. AA: Conceptualization, formal analysis, investigation, resources, validation, visualization. HS: Conceptualization, formal analysis, investigation, resources, validation, visualization, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zohreh Mirjafary or Azim Akbarzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzali, E., Mirjafary, Z., Akbarzadeh, A. et al. Functionalized Layered Double Hydroxide-Zeolitic Imidazolate Nanoreactor with Active Sites of Multi-source Copper (II) as an Efficient Nanocatalyst for Huisgen and Pechmann Reactions. J Inorg Organomet Polym 33, 3282–3292 (2023). https://doi.org/10.1007/s10904-023-02742-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02742-5

Keywords

Navigation