Skip to main content

Advertisement

Log in

Investigation of the Structural, Nonlinear/Linear Optical Parameters, and Dielectric Behavior of PVA/PVP/Mn3O4 Nanocomposite

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Mn3O4 (MO) nanoparticles have drawn a lot of attention due to their use in batteries, ion exchange, sensors, and catalysts in various oxidation states. Here, prior to developing new hybrid freestanding films with different MO nanoparticle concentrations (0, 0.037, 0.37, and 3.7 wt%), it was essential to first manage the electrical and optical properties of the PVA/PVP blend. Several methods, including high-resolution transmission electron microscopy, Atomic force microscope, FTIR, and XRD, were accustomed to verifying the emergence of the polymeric nanocomposite (PNC) films. The correlation between both the optical and dielectric properties of the films and the bandgap was altered using the doping ratio. In terms of its optical properties, MO is observed to have a significant impact on pure PVA/PVP, including the indirect optical energy gap, the localized state’s order, the absorption coefficient, and the response of optical conductivity. Hervé–Vandamme, Moss, Singh-Kumar, and Ravindra are a few models that have studied the connection between energy gaps and refractive index. Moreover, PVA/PVP/xMn3O4 polymer nanocomposite samples with varied MO levels were examined for their linear together with nonlinear optical properties (NLOP). The exclusion of both ordinary and laser light is studied in the PVA/PVP enriched MO (NPs) samples that were created. Moreover, there are sharp decreases in the laser transmitted power from 315.88 to 13.6 mW for the pure blend to 0.135 and 0.00039 for PNC/3.75Mn3O4 nano-composition using a laser source of 623.8 and 533 nm, respectively. Thus PNC/3.75Mn3O4 sample is recognized as a good prospect for relatively inexpensive optical limiting and laser filter innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

This manuscript has associated data in a data repository [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.]

References

  1. F.M. Ali, R.M. Kershi, M.A. Sayed, Y.M. AbouDeif, Evaluation of structural and optical properties of Ce3+ ions doped (PVA/PVP) composite films for new organic semiconductors. Phys. B: Condens. Matter. 538, 160–166 (2018)

    Article  CAS  Google Scholar 

  2. V. Siva, D. Vanitha, A. Murugan, A. Shameem, S.A. Bahadur, Studies on structural and dielectric behaviour of PVA/PVP/SnO nanocomposites. Compos. Commun. 23, 100597 (2021)

    Article  Google Scholar 

  3. S. Choudhary, Structural, optical, dielectric and electrical properties of (PEO–PVP)–ZnO nanocomposites. J. Phys. Chem. Solids. 121, 196–209 (2018)

    Article  CAS  Google Scholar 

  4. H. Yuan, T. Li, Y. Wang, P. Ma, M. Du, T. Liu, Y. Yan, H. Bai, M. Chen, W. Dong, Photoprotective and multifunctional polymer film with excellent near-infrared and UV shielding properties. Compos. Commun. 22, 100443 (2020)

    Article  Google Scholar 

  5. Y. Du, J. Chen, J. Qin, Q. Meng, S.Z. Shen, Flexible PVA/PEDOT:PSS thermoelectric nanocomposite films prepared via an additive manufacturing process. Compos. Commun. 35, 101312 (2022)

    Article  Google Scholar 

  6. I. Morad, A.M. Alshehri, A.F. Mansour, M.H. Wasfy, M.M. El-Desoky, Facile synthesis and comparative study for the optical performance of different TiO2 phases doped PVA nanocomposite films. Phys. B: Condens. Matter. 597, 412415 (2020)

    Article  CAS  Google Scholar 

  7. M. El-Desoky, I. Morad, M. Wasfy, A. Mansour, Synthesis, structural and electrical properties of PVA/TiO2 nanocomposite films with different TiO2 phases prepared by sol–gel technique. J. Mater. Sci.: Mater. Electron. 31, 17574–17584 (2020)

    Google Scholar 

  8. T.S. Soliman, S.A. Vshivkov, A.I. Abdel-Salam, I. Gomaa, A. Khalid, Structural and optical parameters of polyvinyl alcohol films reinforced with Mn2O3/reduced graphene oxide composite. Phys. Scr. 98, 015832 (2023)

    Article  Google Scholar 

  9. I. Morad, M. Salah, H.E. Ali, Y. Khairy, Study the effect of mercuric ions concentration on some optical properties of polyvinyl (alcohol/pyrrolidone) blend film. Phys. Scr. 97, 065506 (2022)

    Article  Google Scholar 

  10. M.J. Yee, N.M. Mubarak, M. Khalid, E.C. Abdullah, P. Jagadish, Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci. Rep. 8, 17295 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. A. Hashim, Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J. Inorg. Organomet. Polym. Mater. 30, 3894–3906 (2020)

    Article  CAS  Google Scholar 

  12. F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003)

    Article  CAS  Google Scholar 

  13. S. Duan, R. Wang, Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog. Nat. Sci.: Mater. Int. 23, 113–126 (2013)

    Article  Google Scholar 

  14. H.A.H. Alzahrani, CuO and MWCNTs nanoparticles filled PVA–PVP nanocomposites: morphological, optical, thermal, dielectric, and electrical characteristics. J. Inorg. Organomet. Polym. Mater. 32, 1913–1923 (2022)

    Article  CAS  Google Scholar 

  15. Y. Khairy, I.S. Yahia, H. Elhosiny, Ali, Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices. J. Mater. Sci.: Mater. Electron. 31, 8072–8085 (2020)

    CAS  Google Scholar 

  16. S. Gandhi, M.R.G. Nair, R. Anbarasan, Sonochemical synthesis and characterization of nanostructured Mn3O4 and its surface catalytic effect on poly (vinyl alcohol). Int. J. Nanosci. 11, 1250004 (2012)

    Article  Google Scholar 

  17. H.E. Ali, M.M. Abdel-Aziz, A.M. Aboraia, I.S. Yahia, H. Algarni, V. Butova, A.V. Soldatov, Y. Khairy, Control the nanostructured growth of manganese oxide using starch: electrical and optical analysis. Optik 227, 165969 (2021)

    Article  CAS  Google Scholar 

  18. A. Bijanu, G. Rajak, R. Paulose, R. Arya, V. Agrawal, V.S. Gowri, M.A. Khan, S.T. Salammal, D. Mishra, Flexible, chemically bonded Bi–PVA–PVP composite for enhanced diagnostic X-ray shielding applications. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02662-4

    Article  Google Scholar 

  19. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8, 904–913 (2019)

    Article  CAS  Google Scholar 

  20. A. Badawi, S.S. Alharthi, Reinforcing the electrical and mechanical properties of the reduced graphene oxide/PVA blend using Fe2O3 nanoparticles for flexible electronic devices. J. Inorg. Organomet. Polym. Mater. 32, 2345–2354 (2022)

    Article  CAS  Google Scholar 

  21. S. Mallakpour, S. Mansourzadeh, Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli. Ultrason. Sonochem. 43, 91–100 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. S.B. Aziz, A.Q. Hassan, S.J. Mohammed, W.O. Karim, M.F.Z. Kadir, H.A. Tajuddin, N.J.N.N.M.Y. Chan, Structural and optical characteristics of PVA: C-dot composites: tuning the absorption of ultra violet (UV) region. Nanomaterials 9, 216 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D.M. Sabara, J.S. Dunne, A.Q. Pedro, J. Trifunović, O. Kotlicic, A. Serrano, I.J.B. Kertész, F. Science, Spectroscopic studies of naproxen and tryptophan immobilized in polyvinyl alcohol. Biotechnol. Food Sci. 75, 39–49 (2011)

    CAS  Google Scholar 

  24. R.P. Chahal, S. Mahendia, A.K. Tomar, Kumar, γ-Irradiated PVA/Ag nanocomposite films: materials for optical applications. J. Alloys Compd. 538, 212–219 (2012)

    Article  CAS  Google Scholar 

  25. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, SHI irradiated PVA/Ag nanocomposites and possibility of UV blocking. Opt. Mater. 52, 237–241 (2016)

    Article  CAS  Google Scholar 

  26. A.M. Meftah, E. Gharibshahi, N. Soltani, W. Yunus, E.J.P. Saion, Structural, optical and electrical properties of PVA/PANI/Nickel nanocomposites synthesized by gamma radiolytic method. Polymers 6, 2435–2450 (2014)

    Article  CAS  Google Scholar 

  27. S.B. Aziz, M.A. Rasheed, A.M. Hussein, H.M. Ahmed, Fabrication of polymer blend composites based on [PVA-PVP](1 – x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties. Mater. Sci. Semiconduct. Process. 71, 197–203 (2017)

    Article  CAS  Google Scholar 

  28. E. Davis, N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22, 0903–0922 (1970)

    Article  CAS  Google Scholar 

  29. S.S. Devangamath, B. Lobo, Structural, optical and electrical studies on hybrid material of in situ formed silver sulfide in polymer blend matrix. J. Inorg. Organomet. Polym. Mater. 29, 1466–1475 (2019)

    Article  CAS  Google Scholar 

  30. F. Yakuphanoglu, G. Barım, I. Erol, The effect of FeCl3 on the optical constants and optical band gap of MBZMA-co-MMA polymer thin films. Phys. B: Condens. Matter. 391, 136–140 (2007)

    Article  CAS  Google Scholar 

  31. M. El-Desoky, I. Morad, M. Wasfy, A. Mansour, Structural and optical properties of TiO2/PVA nanocomposites. IOSR J. Appl. Phys. (IOSR-JAP) 9, 33–43 (2017)

    Google Scholar 

  32. S. Asha, Y. Sangappa, S. Ganesh, Tuning the refractive index and optical band gap of silk fibroin films by electron irradiation. J. Spectros. 2015, 879296 (2015)

    Google Scholar 

  33. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, M.M. Osman, A.A. Albassam, G.J.J.V. Lakshminarayana, A., Technology, improvement of the optical characteristics of PVA/PVP blend with different concentrations of SnS2/Fe. J. Vinyl Add. Technol. 28, 82–93 (2022)

    Article  CAS  Google Scholar 

  34. R.P. Chahal, S. Mahendia, A.K. Tomar, S. Kumar, UV irradiated PVA–Ag nanocomposites for optical applications. Appl. Surf. Sci. 343, 160–165 (2015)

    Article  CAS  Google Scholar 

  35. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  36. H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Gamma-ray irradiation induced structural and optical constants changes of thermally evaporated neutral red thin films. J. Mater. Sci. 47, 493–502 (2012)

    Article  CAS  Google Scholar 

  37. S. Wemple, M. Jr DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  38. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139, 802–810 (2013)

    Article  CAS  Google Scholar 

  39. H. Elhosiny Ali, Y. Khairy, H. Algarni, H.I. Elsaeedy, A.M. Alshehri, I.S. Yahia, Optical spectroscopy and electrical analysis of La3+-doped PVA composite films for varistor and optoelectronic applications. J. Mater. Sci.: Mater. Electron. 29, 20424–20432 (2018)

    CAS  Google Scholar 

  40. A.I. Ali, J.Y. Son, A.H. Ammar, A. Abdel Moez, Y.S. Kim, Optical and dielectric results of Y0.225Sr0.775CoO3 ± δ thin films studied by spectroscopic ellipsometry technique. Results Phys. 3, 167–172 (2013)

    Article  Google Scholar 

  41. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi (b) 131, 415–427 (1985)

    Article  CAS  Google Scholar 

  42. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the penn gap in semiconductors. Phys. Status Solidi (b) 93, K155–K160 (1979)

    Article  CAS  Google Scholar 

  43. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, G. Balakrishnaiah, M.R. Kumar, Interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 473, 28–35 (2009)

    Article  CAS  Google Scholar 

  44. P. Hervé, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35, 609–615 (1994)

    Article  Google Scholar 

  45. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 571–574 (2010)

    CAS  Google Scholar 

  46. Y. Akaltun, M.A. Yıldırım, A. Ateş, M. Yıldırım, The relationship between refractive index-energy gap and the film thickness effect on the characteristic parameters of CdSe thin films. Opt. Commun. 284, 2307–2311 (2011)

    Article  CAS  Google Scholar 

  47. M.S. Reddy, K.R. Reddy, B. Naidu, P. Reddy, Optical constants of polycrystalline CuGaTe2 films. Opt. Mater. 4, 787–790 (1995)

    Article  CAS  Google Scholar 

  48. M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films. J. Non-cryst. Solids. 326, 399–404 (2003)

    Article  Google Scholar 

  49. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  50. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045–2048 (1970)

    Article  Google Scholar 

  51. V. Ganesh, I. Yahia, S. AlFaify, M. Shkir, Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications. J. Phys. Chem. Solids. 100, 115–125 (2017)

    Article  CAS  Google Scholar 

  52. L. Tichý, H. Ticha, P. Nagels, R. Callaerts, R. Mertens, M. Vlček, Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122–128 (1999)

    Article  Google Scholar 

  53. S. Kumar, G.K. Prajapati, A.L. Saroj, P.N. Gupta, Structural, electrical and dielectric studies of nano-composite polymer blend electrolyte films based on (70–x) PVA–x PVP–NaI–SiO2. Phys. B: Condens. Matter. 554, 158–164 (2019)

    Article  CAS  Google Scholar 

  54. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48, 6797–6806 (2019)

    Article  CAS  Google Scholar 

  55. M. Mehedi Hassan, W. Khan, A. Azam, A.H. Naqvi, Influence of cr incorporation on structural, dielectric and optical properties of ZnO nanoparticles. J. Ind. Eng. Chem. 21, 283–291 (2015)

    Article  CAS  Google Scholar 

  56. Z. Wang, W. Zhou, L. Dong, X. Sui, H. Cai, J. Zuo, Q. Chen, Dielectric spectroscopy characterization of relaxation process in Ni/epoxy composites. J. Alloys Compd. 682, 738–745 (2016)

    Article  CAS  Google Scholar 

  57. S. More, R. Dhokne, S. Moharil, Structural properties and temperature dependence dielectric properties of PVA-Al 2O3 composite thin films. Polym. Bull. 75, 909–923 (2018)

    Article  CAS  Google Scholar 

  58. E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, H.M. Zidan, AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J. Mater. Sci.: Mater. Electron. 30, 15521–15533 (2019)

    CAS  Google Scholar 

  59. M.M. El-Nahass, H.M. Abd El-Khalek, A.M. Nawar, Structural and optical characterizations of Ni (II) tetraphenyl porphyrin thin films. Eur. Phys. J. Appl. Phys. 57, 30201 (2012)

    Article  Google Scholar 

  60. A.M. Nawar, I.S. Yahia, Fabrication and characterization of anthracene thin films for wide-scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)

    Article  CAS  Google Scholar 

  61. A. Singh, Z.R. Khan, P.M. Vilarinho, V. Gupta, R.S. Katiyar, Influence of thickness on optical and structural properties of BiFeO3 thin films: PLD grown. Mater. Res. Bull. 49, 531–536 (2014)

    Article  CAS  Google Scholar 

  62. C.V. Subba Reddy, A.P. Jin, Q.Y. Zhu, L.Q. Mai, W. Chen, Preparation and characterization of (PVP + NaClO4) electrolytes for battery applications. Eur. Phys. J. E 19, 471–476 (2006)

    Article  PubMed  Google Scholar 

  63. H.E. Ali, I. Morad, H. Algarni, M. El-Desoky, Y. Khairy, H. Zahran, I. Yahia, Structure analysis and nonlinear/linear optical properties of PVAOH/Si composites for low-cost optical technologies and limiting absorption. J. Mater. Sci.: Mater. Electron. 32, 4466 (2021)

    CAS  Google Scholar 

  64. T.H. AlAbdulaal, A. Almoadi, I.S. Yahia, H.Y. Zahra, M.S. Alqahtani, E.S. Yousef, K.I. Hussein, M. Jalalah, F.A. Harraz, Al-Assiri, high optical performance of Gd2O3-doped PVA/PVP composite films for electronic and laser CUT-OFF filters. Optik. 268, 169741 (2022)

    Article  CAS  Google Scholar 

  65. I.S. Yahia, M.I. Mohammed, A.M. Nawar, Multifunction applications of TiO2/poly(vinyl alcohol) nanocomposites for laser attenuation applications. Phys. B: Condens. Matter. 556, 48–60 (2019)

    Article  CAS  Google Scholar 

  66. Z.K. Heiba, M.B. Mohamed, S.I. Ahmed, A.A. Alhazime, Tailoring the optical properties of PVA/PVP blend by doping with Cu/MnS nanoparticles. J. Vinyl Add. Tech. 27, 410–418 (2021)

    Article  CAS  Google Scholar 

  67. P. Dhatarwal, R.J. Sengwa, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics. Phys. B: Condens. Matter. 613, 412989 (2021)

    Article  CAS  Google Scholar 

  68. M.J. Tommalieh, N.S. Awwad, H.A. Ibrahium, A.A. Menazea, Characterization and electrical enhancement of PVP/PVA matrix doped by gold nanoparticles prepared by laser ablation. Radiat. Phys. Chem. 179, 109195 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Ministry of Education in KSA for funding this research work through project number KKU-IFP2-DA-5.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Credit authorship contribution statement IM: Writing—original draft, investigation, conceptualization. YK: Writing—review & editing, conceptualization KFQ: Writing—review & editing. AI, review & editing, HEA: Funding acquisition. MMAA: Investigation, conceptualization, HA: Supervision, funding acquisition.

Corresponding authors

Correspondence to Ibrahim Morad or H. Elhosiny Ali.

Ethics declarations

Conflict of interest

We thus certify that the work does not include any conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morad, I., Ali, H.E., Khairy, Y. et al. Investigation of the Structural, Nonlinear/Linear Optical Parameters, and Dielectric Behavior of PVA/PVP/Mn3O4 Nanocomposite. J Inorg Organomet Polym 33, 3060–3075 (2023). https://doi.org/10.1007/s10904-023-02741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02741-6

Keywords

Navigation