Skip to main content

Advertisement

Log in

Effect of Multiwalled Carbon Nanotube Contents on Photophysical Properties of Poly-TPD/MWCNT Nanocomposites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Tuning photophysical properties of poly[bis(4-butypheny)-bis(phenyl)benzidine] (poly-TPD) by addition multi walled carbon nanotubes (MWCNTs) with different weight ratios is demonstrated. The solution blending method followed by spin coating technique was used to successfully prepare thin films of poly-TPD/MWCNTs. Fourier transform infrared spectroscopy (FTIR) revealed the interaction between poly-TPD and MWCNT. UV–Vis and photoluminescence spectrophotometer were used to determine the optical properties. No chemical interaction was detected between poly-TPD and MWCNTs in their ground states, as evidenced by the absence of new peaks in FTIR and absorption spectra. The nanocomposites showed reduced direct (Egd) and indirect (Egi) energy band gaps values, while Urbach energy (Eu) values increased with increasing MWCNT doping, resulting in a narrower optical energy band gap width and an increase in localized energy levels that act as electron traps in the band gap. The charge transfer from poly-TPD to MWCNTs was evidenced by the reduction in poly-TPD emission, as well as changes in both the values of Stokes shift and vibronic spacing energy in the nanocomposite system. The parameters of the Stern–Volmer quenching constant (kSV), fluorescence lifetime (τ) of excited poly-TPD in the presence of MWCNTs, photo-induced electron-transfer rate (kET), and bimolecular quenching rate (kq) can be adjusted to further enhance efficient charge transfer between poly-TPD and MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Alsaad, Q.M. Al-Bataineh, A. Ahmad, I. Jum’h, N. Alaqtash, A. Bani-Salameh, Optical properties of transparent PMMA-PS/ZnO NPs polymeric nanocomposite films: UV-Shielding applications. Mater. Res. Express 6(12), 126446 (2020)

    Article  Google Scholar 

  2. A. Alsaad, A. Ahmad, A.R. Al Dairy, A.S. Al-anbar, Q.M. Al-Bataineh, Spectroscopic characterization of optical and thermal properties of (PMMA-PVA) hybrid thin films doped with SiO2 nanoparticles. Results Phys. 19, 103463 (2020)

    Article  Google Scholar 

  3. S.B. Aziz, O.G. Abdullah, M. Brza, A.K. Azawy, D.A. Tahir, Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys. 15, 102776 (2019)

    Article  Google Scholar 

  4. A. Rajeh, H. Ragab, M. Abutalib, Co doped ZnO reinforced PEMA/PMMA composite: structural, thermal, dielectric and electrical properties for electrochemical applications. J. Mol. Struct. 1217, 128447 (2020)

    Article  CAS  Google Scholar 

  5. M. Hassan, K.R. Reddy, E. Haque, A.I. Minett, V.G. Gomes, High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J. Colloid Interface Sci. 410, 43–51 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. D.W. Mosley, K. Auld, D. Conner, J. Gregory, X.-Q. Liu, A. Pedicini, D. Thorsen, M. Wills, G. Khanarian, E.S. Simon. (2008) High performance encapsulants for ultra high-brightness LEDs, In: Light-emitting diodes: research, manufacturing, and applications XII. SPIE. 221-228

  7. T. Nakamura, H. Fujii, N. Juni, N. Tsutsumi, Enhanced coupling of light from organic electroluminescent device using diffusive particle dispersed high refractive index resin substrate. Opt. Rev. 13, 104–110 (2006)

    Article  Google Scholar 

  8. R.D. Allen, G.M. Wallraff, D.C. Hofer, R.R. Kunz, Photoresists for 193-nm lithography. IBM J. Res. Dev. 41(1.2), 95–104 (1997)

    Article  CAS  Google Scholar 

  9. K.C. Krogman, T. Druffel, M.K. Sunkara, Anti-reflective optical coatings incorporating nanoparticles. J. Nanotechnol. 16(7), S338 (2005)

    Article  Google Scholar 

  10. J.L. Regolini, D. Benoit, P. Morin, Passivation issues in active pixel CMOS image sensors. Microelectron. Reliab. 47(4–5), 739–742 (2007)

    Article  CAS  Google Scholar 

  11. P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)

    Article  CAS  Google Scholar 

  12. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8(1), 904–913 (2019)

    Article  CAS  Google Scholar 

  13. S.H. Ryu, H.-B. Cho, S. Kim, Y.-T. Kwon, J. Lee, K.-R. Park, Y.-H. Choa, The effect of polymer particle size on three-dimensional percolation in core-shell networks of PMMA/MWCNTs nanocomposites: properties and mathematical percolation model. Compos. Sci. Technol. 165, 1–8 (2018)

    Article  CAS  Google Scholar 

  14. A. Kumar, V. Kumar, M. Kumar, K. Awasthi, Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI applications. Polym. Compos. 39(11), 3858–3868 (2018)

    Article  CAS  Google Scholar 

  15. N. Hota, N. Karna, K. Dubey, D. Tripathy, B. Sahoo, Effect of temperature and electron beam irradiation on the dielectric properties and electromagnetic interference shielding effectiveness of ethylene acrylic elastomer/millable polyurethane/SWCNT nanocomposites. Eur. Polym. J. 112, 754–765 (2019)

    Article  CAS  Google Scholar 

  16. O. Breuer, U. Sundararaj, Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym. Compos. 25(6), 630–645 (2004)

    Article  CAS  Google Scholar 

  17. Y. Mamunya, A. Boudenne, N. Lebovka, L. Ibos, Y. Candau, M. Lisunova, Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos. Sci. Technol. 68(9), 1981–1988 (2008)

    Article  CAS  Google Scholar 

  18. H. Bao, X. Ruan, T.S. Fisher, Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations. Opt. Express 18(6), 6347–6359 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. E. Lidorikis, A.C. Ferrari, Photonics with multiwall carbon nanotube arrays. ACS Nano 3(5), 1238–1248 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. K.-I. Kim, D.-A. Kim, K.D. Patel, U.S. Shin, H.-W. Kim, J.-H. Lee, H.-H. Lee, Carbon nanotube incorporation in PMMA to prevent microbial adhesion. Sci. Rep. 9(1), 4921 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  21. F. Hezam, A. Rajeh, O. Nur, M. Mustafa, Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys. B Condens. Matter. 596, 412389 (2020)

    Article  CAS  Google Scholar 

  22. M. Morsi, A. Rajeh, A. Al-Muntaser, Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Compos. B Eng. 173, 106957 (2019)

    Article  CAS  Google Scholar 

  23. E.Y. Malikov, M.B. Muradov, O.H. Akperov, G.M. Eyvazova, R. Puskás, D. Madarász, L. Nagy, Á. Kukovecz, Z. Kónya, Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotube nanocomposites. Phys. E Low-Dimens. Syst. Nanostruct. 61, 129–134 (2014)

    Article  CAS  Google Scholar 

  24. M.I. Delgado-Rosero, N.M. Jurado-Meneses, R. Uribe-Kaffure, Composite Polymer Electrolytes based on (PEO) 4CF3COOLi and multi-walled Carbon Nanotube (MWCNT). Polymers 15(1), 49 (2023)

    Article  CAS  Google Scholar 

  25. M. Kök, M.E. Pekdemir, E. Öner, M. Coşkun, S. Hekim, MWCNT nanocomposite films prepared using different ratios of PVC/PCL: combined FT-IR/DFT, thermal and shape memory properties. J. Mol. Struct. 18, 134989 (2023)

    Article  Google Scholar 

  26. D. Ginger, N. Greenham, Charge separation in conjugated-polymer/nanocrystal blends. Synth. Met. 101(1–3), 425–428 (1999)

    Article  CAS  Google Scholar 

  27. K. Hazarika, H.R. Thakur, J.C. Dutta, Fabrication and characterization of different polymer doped CNT nanocomposites for creatinine detection. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.032

    Article  Google Scholar 

  28. F. Zhou, Y. Wang, W. Wu, T. Jing, S. Mei, Y. Zhou, Synergetic signal amplification of multi-walled carbon nanotubes-Fe3O4 hybrid and trimethyloctadecylammonium bromide as a highly sensitive detection platform for tetrabromobisphenol A. Sci. Rep. 6(1), 1–12 (2016)

    Google Scholar 

  29. N. Juhari, W.H.A. Majid, Z.A. Ibrahim, Structural and optical studies of MEH-PPV using two different solvents prepared by spin coating technique. Solid State Sci. Technol. 15(1), 141–146 (2007)

    Google Scholar 

  30. B.A. Al-Asbahi, A.A. Alanezi, M.S. AlSalhi, Photophysical characteristics of multicolor emitting MDMO-PPV–DMP/ZnO hybrid nanocomposites. Molecules 27(3), 843 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. K. Bazaka, M.V. Jacob, Effects of iodine doping on optoelectronic and chemical properties of polyterpenol thin films. Nanomaterials 7(1), 11 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  32. A. Petrella, M. Tamborra, M.L. Curri, P. Cosma, M. Striccoli, P.D. Cozzoli, A. Agostiano, Colloidal TiO2 nanocrystals/MEH-PPV nanocomposites: photo (electro) chemical study. J. Phys. Chem. B 109(4), 1554–1562 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. A.A. Zainudin, Y.W. Fen, N.A. Yusof, N.A.S. Omar, Structural, optical and sensing properties of ionophore doped graphene based bionanocomposite thin film. Optik 144, 308–315 (2017)

    Article  CAS  Google Scholar 

  34. Y.-H. Chen, C.-H. Ho, Temperature dependence of direct and indirect band gaps of Bi13I2S18 hexagonal rod crystals. Mater. Chem. Phys. 206, 71–75 (2018)

    Article  CAS  Google Scholar 

  35. B.H. Rabee, B.A. Al-Kareem, Study of optical properties of (PMMA-CuO) nanocomposites. Int. J. Sci. Res. 5, 879–883 (2016)

    Google Scholar 

  36. S.B. Aziz, Modifying poly (vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices. J. Electron. Mater. 45(1), 736–745 (2016)

    Article  CAS  Google Scholar 

  37. S. Prasher, M. Kumar, S. Singh, Electrical and optical properties of O6+ ion Beam–Irradiated polymers. Int. J. Polym. Anal. Character. 19(3), 204–211 (2014)

    Article  CAS  Google Scholar 

  38. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)

    Article  CAS  Google Scholar 

  39. N. Tigau, V. Ciupina, G. Prodan, Structural, optical and electrical properties of Sb2O3 thin films with different thickness. J. Optoelectron. Adv. Mater, 8(1), 37 (2006)

    CAS  Google Scholar 

  40. J. Zou, P. Le Rendu, I. Musa, S.-H. Yang, Y. Dan, C.T. That, T. Nguyen, Investigation of the optical properties of polyfluorene/ZnO nanocomposites. Thin Solid Films 519(12), 3997–4003 (2011)

    Article  CAS  Google Scholar 

  41. B.A. Al-Asbahi, A.A. Alanezi, M.S. AlSalhi, Materials, enhancing photophysical properties of MDMO-PPV-DMP conjugated polymer via incorporation anatase titania nanoparticles. J. Inorg. Organomet. Polym. 32(9), 3556–3563 (2022)

    Article  CAS  Google Scholar 

  42. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79(3), 1741–1745 (1996)

    Article  CAS  Google Scholar 

  43. A. Abdelghany, M. Morsi, A. Abdelrazek, M. Ahmed, Role of silica nanoparticles on structural, optical and morphological properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) copolymer. Silicon 10, 519–524 (2018)

    Article  CAS  Google Scholar 

  44. S.-H. Yang, P. Le Rendu, T.P. Nguyen, C.-S. Hsu, Fabrication of MEH-PPV/SiO2 and MEH-PPV/TiO2 nanocomposites with enhanced luminescent stabilities. Rev. Adv. Mater. Sci. 15(2), 144–149 (2007)

    CAS  Google Scholar 

  45. Y. Yan, H. Sun, L. Zhang, J. Zhang, J. Mu, S.-Z. Kang, Effect of multiwalled carbon nanotubes on the photocatalytic degradation of methyl orange in aqueous solution under visible light irradiation. J. Dispers Sci. Technol. 32(9), 1332–1336 (2011)

    Article  CAS  Google Scholar 

  46. J. Zhang, B. Zhu, L. Zhang, J. Yu, Femtosecond transient absorption spectroscopy investigation on electron transfer mechanism in photocatalysis. Chem. Commun. 59(1), 688–699 (2023)

    Article  CAS  Google Scholar 

  47. J. Zhang, L. Zhang, W. Wang, J. Yu, In situ irradiated X-ray photoelectron spectroscopy investigation on electron transfer mechanism in S-scheme photocatalyst. J. Phys. Chem. Lett. 13(36), 8462–8469 (2022)

    Article  CAS  PubMed  Google Scholar 

  48. L. Wang, J. Zhang, H. Yu, I.H. Patir, Y. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, Dynamics of photogenerated charge carriers in inorganic/organic S-scheme heterojunctions. J. Phys. Chem. Lett. 13(21), 4695–4700 (2022)

    Article  CAS  PubMed  Google Scholar 

  49. U. Kumar, S. Upadhyay, P.A. Alvi, Study of reaction mechanism, structural, optical and oxygen vacancy-controlled luminescence properties of Eu-modified Sr2SnO4 ruddlesden popper oxide. Phys. B Condens. Matter. 604, 412708 (2021)

    Article  CAS  Google Scholar 

  50. H. Bässler, B. Schweitzer, Site-selective fluorescence spectroscopy of conjugated polymers and oligomers. Acc. Chem. Res. 32(2), 173–182 (1999)

    Article  Google Scholar 

  51. J. Blatchford, S. Jessen, L.-B. Lin, T. Gustafson, D.-K. Fu, H.-L. Wang, T. Swager, A. MacDiarmid, A. Epstein, Photoluminescence in pyridine-based polymers: role of aggregates. J. Phys. Rev. B. 54(13), 9180 (1996)

    Article  CAS  Google Scholar 

  52. B.A. Al-Asbahi, M.H.H. Jumali, R. Al-Gaashani, Efficient charge transfer mechanism in Polyfluorene/ZnO nanocomposite thin films. J. Nanomater. 2014, 87–87 (2014)

    Article  Google Scholar 

  53. J. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. (Kluwer Academic, New York, 1999)

    Book  Google Scholar 

  54. B.A. Al-Asbahi, S.M. Qaid, A.S. Aldwayyan, Effect of donor-acceptor concentration ratios on non-radiative energy transfer in zero-dimensional Cs4PbBr6 perovskite/MEH-PPV nanocomposite thin films. Polymers 12(2), 444 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. X. Zhang, H. Dai, J. Zhao, S. Wang, X. Sun, All-solution processed composite hole transport layer for quantum dot light emitting diode. Thin Solid Films 603, 187–192 (2016)

    Article  CAS  Google Scholar 

  56. Y.-Y. Lin, T.-H. Chu, C.-W. Chen, W.-F. Su, Improved performance of polymer/TiO2 nanorod bulk heterojunction photovoltaic devices by interface modification. Appl. Phys. Lett. 92(5), 40 (2008)

    Article  Google Scholar 

  57. T. Vats, S.N. Sharma, M. Kumar, M. Kar, K. Jain, V. Singh, B. Mehta, A. Narula, Comparison of photostability, optical and structural properties of TiO2/conjugated polymer hybrid composites prepared via different methods. Thin Solid Films 519(3), 1100–1105 (2010)

    Article  CAS  Google Scholar 

  58. F. Ricchelli, Photophysical properties of porphyrins in biological membranes. J. Photochem. Photobiol. B Biol. 29(2–3), 109–118 (1995)

    Article  CAS  Google Scholar 

  59. J. Zimmermann, J. Von Gersdorff, H. Kurreck, B. Röder, Determination of the electron transfer parameters of a covalently linked porphyrin-quinone with mesogenic substituents—optical spectroscopic studies in solution. J. Photochem. Photobiol. B Biol. 40(3), 209–217 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author extend his appreciation to the Deputyship for Research & Innovation, “Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3–024–1)”.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BA did the following: conceptualization, methodology, formal analysis, investigation, writing—original draft preparation, writing—review and editing, and visualization.

Corresponding author

Correspondence to Bandar Ali Al-Asbahi.

Ethics declarations

Conflict of interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Asbahi, B.A. Effect of Multiwalled Carbon Nanotube Contents on Photophysical Properties of Poly-TPD/MWCNT Nanocomposites. J Inorg Organomet Polym 33, 2552–2561 (2023). https://doi.org/10.1007/s10904-023-02706-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02706-9

Keywords

Navigation