Skip to main content
Log in

NEW Hybrid ZIF-8/NC-PU and NC-PU Gel Composites for the Effective Removal of Cationic and Anionic Dye from Aqueous Solution: Process Optimization

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

New hybrid metal organic framework based polymer nanocomposite (ZIF-8/NC-PU) and interpenetrating polymer gel nanocomposites (NC-PU) were prepared for the adsorption of cationic (Rh-B) and anionic (IC) dyes from aqueous solution. The characterisation of the ZIF-8 based composites and gel composites is carried out using FT-IR and SEM analysis to investigate the chemical composition and morphology of the sample. Moringa oleifera seed pod based nanocellulose (5 wt%) is used as the filler in NC-PU gel composites and ZIF-8/NC-PU MOF composites. The optimal level of the most significant identified variables affecting the adsorption process were determined by the response surface methodology (RSM) using Plackett–Burman and Box–Behnken design. Adsorption capacity increased with the increase in dosage of the adsorbent, pH and initial dye concentration. Plackett–Burman was performed for the experiments involving the dyes Rh-B and Indigo carmine dyes. It gave 12 experiments in each trials and resulted in 3 significant parameters. Box–Behnken was further used to determine the optimum parameters for the adsorption keeping PU weight percentage as 3. The percentage uptake predicted by the model is in good agreement with the experimental values. The findings assume that the adsorbents could be used effectively as highly efficient adsorbents for the removal of multiple dyes from wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Article  PubMed  CAS  Google Scholar 

  2. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. 252, 352–365 (2019)

    Article  PubMed  CAS  Google Scholar 

  3. A.A. Adeyemo, I.O. Adeoye, O.S. Bello, Adsorption of dyes using different types of clay: a review. Appl. Water Sci. 7, 543–568 (2017)

    Article  CAS  Google Scholar 

  4. A. Saifi, J.P. Joseph, A.P. Singh, A. Pal, K. Kumar, Complexation of an azo dye by cyclodextrins: a potential strategy for water purification. ACS Omega 6(7), 4776–4782 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. G. Crini, E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 17, 145–155 (2019)

    Article  CAS  Google Scholar 

  6. A.M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey, Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 8, 649–666 (2011)

    Article  CAS  Google Scholar 

  7. N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J. Hazard. Mater. 151(1), 1–8 (2008)

    Article  PubMed  CAS  Google Scholar 

  8. B.L. Phoon, C.C. Ong, M.S.M. Saheed, P.L. Show, J.S. Chang, T.C. Ling, J.C. Juan, Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 400, 122961 (2020)

    Article  PubMed  Google Scholar 

  9. M. Clara, B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 39(19), 4797–4807 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. P.E. Stackelberg, E.T. Furlong, M.T. Meyer, S.D. Zaugg, A.K. Henderson, D.B. Reissman, Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 329(1–3), 99–113 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. E. Jamróz, P. Kulawik, P. Kopel, The effect of nanofillers on the functional properties of biopolymer-based films: a review. Polymers 11(4), 675 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  12. R.A. Ilyas, A. Azmi, N.M. Nurazzi, A. Atiqah, M.S.N. Atikah, R. Ibrahim, S.M. Sapuan, Oxygen permeability properties of nanocellulose reinforced biopolymer nanocomposites. Mater. Today: Proc. 52, 2414–2419 (2022)

    CAS  Google Scholar 

  13. R. Paradelo, X. Vecino, A.B. Moldes, M.T. Barral, Potential use of composts and vermicomposts as low-cost adsorbents for dye removal: an overlooked application. Environ. Sci. Pollut. Res. 26, 21085–21097 (2019)

    Article  CAS  Google Scholar 

  14. C. Petit, T.J. Bandosz, MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. J. Mater. Chem. 19(36), 6521–6528 (2009)

    Article  CAS  Google Scholar 

  15. S.I. Asiya, G.Z. Kyzas, K. Pal, F.G. de Souza Jr, Graphene functionalized hybrid nanomaterials for industrial-scale applications: a systematic review. J. Mol. Struct. 1239, 130518 (2021)

    Article  Google Scholar 

  16. J. Kaur, I. Sharma, E. Zangrando, K. Pal, S.K. Mehta, R. Kataria, Fabrication of novel copper MOF nanoparticles for nanozymatic detection of mercury ions. J. Mater. Res. Technol. 22, 278–291 (2023)

    Article  Google Scholar 

  17. K. Pal, N. Asthana, A.A. Aljabali, S.K. Bhardwaj, S. Kralj, A. Penkova, S. Thomas, T. Zaheer, F. Gomes de Souza, A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci. 47(5), 691–707 (2022)

    Article  CAS  Google Scholar 

  18. K. Pal, S. Chakroborty, P. Panda, N. Nath, S. Soren, Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ. Sci. Pollut. Res. 29(51), 76626–76643 (2022)

    Article  CAS  Google Scholar 

  19. F. Yang, M. Du, K. Yin, Z. Qiu, J. Zhao, C. Liu, G. Zhang, Y. Gao, H. Pang, Applications of metal-organic frameworks in water treatment: a review. Small 18(11), 2105715 (2022)

    Article  CAS  Google Scholar 

  20. K. Maru, S. Kalla, R. Jangir, Dye contaminated wastewater treatment through metal–organic framework (MOF) based materials. New J. Chem. 46(7), 3054–3072 (2022)

    Article  CAS  Google Scholar 

  21. J.Y. Lee, Q. She, F. Huo, C.Y. Tang, Metal–organic framework-based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Membr. Sci. 492, 392–399 (2015)

    Article  CAS  Google Scholar 

  22. Z.K. Tan, J.L. Gong, S.Y. Fang, J. Li, W.C. Cao, Z.P. Chen, Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal–organic framework (Ag-MOF) for water treatment. Appl. Surf. Sci. 590, 153059 (2022)

    Article  CAS  Google Scholar 

  23. T. Wu, N. Prasetya, K. Li, Recent advances in aluminium-based metal–organic frameworks (MOF) and its membrane applications. J. Membr. Sci. 615, 118493 (2020)

    Article  CAS  Google Scholar 

  24. D. Yamamoto, T. Maki, S. Watanabe, H. Tanaka, M.T. Miyahara, K. Mae, Synthesis and adsorption properties of ZIF-8 nanoparticles using a micromixer. Chem. Eng. J. 227, 145–150 (2013)

    Article  CAS  Google Scholar 

  25. J.G. Vijayan, A. Chandrashekar, J. AG, T.N. Prabhu, P. Kalappa, Polyurethane and its composites derived from bio-sources: synthesis, characterization and adsorption studies. Polym. Polym. Compos. (2022). https://doi.org/10.1177/09673911221110347

    Article  Google Scholar 

  26. R. Venkataraghavan, R. Thiruchelvi, D. Sharmila, Statistical optimization of textile dye effluent adsorption by Gracilaria edulis using Plackett–Burman design and response surface methodology. Heliyon 6(10), e05219 (2020)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. J.G. Vijayan, T.N. Prabhu, K. Pal, Poly(N-isopropyl acrylamide)-co-poly(sodium acrylate) hydrogel for the adsorption of cationic dyes from aqueous solution. Eur. Phys. J. E 46(3), 11 (2023)

    Article  PubMed  CAS  Google Scholar 

  28. A. Mandal, D. Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 86(3), 1291–1299 (2011)

    Article  CAS  Google Scholar 

  29. S. Zhang, F. Zhang, L. Jin, B. Liu, Y. Mao, Y. Liu, J. Huang, Preparation of spherical nanocellulose from waste paper by aqueous NaOH/thiourea. Cellulose 26, 5177–5185 (2019)

    Article  CAS  Google Scholar 

  30. M. Pühse, M. Keerl, C. Scherzinger, W. Richtering, R. Winter, Influence of pressure on the state of poly(N-isopropylacrylamide) and poly(N,N-diethylacrylamide) derived polymers in aqueous solution as probed by FTIR-spectroscopy. Polymer 51(16), 3653–3659 (2010)

    Article  Google Scholar 

  31. G. Gürdağ, B. Kurtulus, Synthesis and characterization of novel poly(N-isopropylacrylamide-co-N,N′-dimethylaminoethyl methacrylate sulfate) hydrogels. Ind. Eng. Chem. Res. 49(24), 12675–12684 (2010)

    Article  Google Scholar 

  32. M. Khajavian, E. Salehi, V. Vatanpour, Nanofiltration of dye solution using chitosan/poly(vinyl alcohol)/ZIF-8 thin film composite adsorptive membranes with PVDF membrane beneath as support. Carbohydr. Polym. 247, 116693 (2020)

    Article  PubMed  CAS  Google Scholar 

  33. H. Yang, X. Guo, R. Chen, Q. Liu, J. Liu, J. Yu, M. Zhang, Enhanced anti-biofouling ability of polyurethane anti-cavitation coating with ZIF-8: a comparative study of various sizes of ZIF-8 on coating. Eur. Polym. J. 144, 110212 (2021)

    Article  CAS  Google Scholar 

  34. N. Yasmeen, A. Karpinska, J. Kalecki, W. Kutner, K. Kwapiszewska, P.S. Sharma, Electrochemically synthesized polyacrylamide gel and core–shell nanoparticles for 3D cell culture formation. ACS Appl. Mater. Interfaces 14(29), 32836–32844 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Q. Yu, X. Jiang, Z. Cheng, Y. Liao, M. Duan, Porous ZIF-8@ polyacrylonitrile composite beads for iodine capture. RSC Adv. 11(48), 30259–30269 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. H. Li, D. Meng, P. Qi, J. Sun, H. Li, X. Gu, S. Zhang, Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@ SEP) for reducing the fire hazards in thermoplastic polyurethane. Appl. Clay Sci. 216, 106376 (2022)

    Article  Google Scholar 

  37. S.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, W.N.L. Dos Santos, Box–Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597(2), 179–186 (2007)

    Article  PubMed  CAS  Google Scholar 

  38. J.P. Maran, S. Manikandan, K. Thirugnanasambandham, C.V. Nivetha, R. Dinesh, Box–Behnken design based statistical modeling for ultrasound-assisted extraction of corn silk polysaccharide. Carbohydr. Polym. 92(1), 604–611 (2013)

    Article  Google Scholar 

  39. P. Tripathi, V.C. Srivastava, A. Kumar, Optimization of an azo dye batch adsorption parameters using Box–Behnken design. Desalination 249(3), 1273–1279 (2009)

    Article  CAS  Google Scholar 

Download references

Funding

This study is self supported. No external funding is received to conduct the study.

Author information

Authors and Affiliations

Authors

Contributions

JGV contributed in the synthesis and applications, TNP (Professor) contributed in the research plan, JAG contributed in planning and conceptualization of the manuscript. SC provides research resources and guidance of the research direction, as well as made substantial contributions to conception and moderation. ISF contributed plan of the work in ensuring analysis and revising it critically for important intellectual content. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Corresponding author

Correspondence to T. Niranjana Prabhu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, J.G., Prabhu, T.N., Jineesh, A.G. et al. NEW Hybrid ZIF-8/NC-PU and NC-PU Gel Composites for the Effective Removal of Cationic and Anionic Dye from Aqueous Solution: Process Optimization. J Inorg Organomet Polym 33, 3861–3881 (2023). https://doi.org/10.1007/s10904-023-02700-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02700-1

Keywords

Navigation