Skip to main content

Advertisement

Log in

Innovative Approach to Fuel Cell Bipolar Plate Using Conductive Polymer Blend Composites: Selective Localization of Carbon Fiber at the Interface of Polymer Blends

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Carbon fiber-polymer blend composite bipolar plate is developed using epoxy resin and polypropylene as the polymer blend (PB) and short carbon fiber (CF) as conductive reinforcements by melt mixing and compression molding technique. A PB results in a lower percolation threshold, known as the double percolation threshold, compared to a single polymer which requires a high filler concentration. Via thermodynamic and kinetic factors, the selective localization of CF at the interface in the PB was predicted and later confirmed through SEM analysis. The electrical conductivity, flexural properties, tensile properties, impact strength, and water absorption are the characteristics used to evaluate the developed bipolar plates. The electrical conductivities of the prepared composites increased with the addition of CF and reached 16.7 S/cm for the 70 wt% CF reinforcement, as expected. The results showed that the flexural and tensile strength were decreasing with the rising additive ratio of CF. At 30 wt% of CF, PP/Epoxy/CF recorded the highest tensile strength (30 MPa) and flexural strength (72.7 MPa). On the other hand, the impact strength increased as the CF concentration increased from 30 to 60 wt%, reaching the highest value of 7.49 kJ/m2 at 60 wt%. However, at 70 wt%, the impact strength significantly decreased. The water absorption of the composites increased slightly as the CF content increased from 30 to 60 wt%, but significantly increased at 70 wt%. The developed composites met the DOE targets for mechanical properties and water absorption. However, the electrical conductivity of the composites still falls below the targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.K. Maurya, R. Gogoi, G. Manik, 9 - Thermal behavior of elastomer blends and composites, in Elastomer Blends and Composites. ed. by S.M. Rangappa, J. Parameswaranpillai, S. Siengchin, T. Ozbakkaloglu (Elsevier, 2022), pp.149–169

    Chapter  Google Scholar 

  2. B.G. Soares, F. Touchaleaume, L.F. Calheiros, G.M.O. Barra, Effect of double percolation on the electrical properties and electromagnetic interference shielding effectiveness of carbon-black-loaded polystyrene/ethylene vinyl acetate copolymer blends. J. Appl. Polym. Sci. 133, 43013 (2016). https://doi.org/10.1002/app.43013

    Article  CAS  Google Scholar 

  3. R. Ravindren, S. Mondal, K. Nath, N.C. Das, Prediction of electrical conductivity, double percolation limit and electromagnetic interference shielding effectiveness of copper nanowire filled flexible polymer blend nanocomposites. Compos. B Eng. 164, 559–569 (2019). https://doi.org/10.1016/j.compositesb.2019.01.066

    Article  CAS  Google Scholar 

  4. M. Sumita, K. Sakata, S. Asai et al., Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 25, 265–271 (1991). https://doi.org/10.1007/BF00310802

    Article  CAS  Google Scholar 

  5. S.L. Scherzer, E. Pavlova, J.D. Esper, Z. Starý, Phase structure, rheology and electrical conductivity of co-continuous polystyrene/polymethylmethacrylate blends filled with carbon black. Compos. Sci. Technol. 119, 138–147 (2015). https://doi.org/10.1016/j.compscitech.2015.10.003

    Article  CAS  Google Scholar 

  6. S. Lee, M. Kim, H.Y. Song, K. Hyun, Characterization of the effect of clay on morphological evaluations of PLA/biodegradable polymer blends by FT-rheology. Macromolecules 52, 7904–7919 (2019). https://doi.org/10.1021/acs.macromol.9b00800

    Article  CAS  Google Scholar 

  7. H. Xu, D.W. Schubert, Electrical conductivity of polystyrene/poly(n-alkyl methacrylate)s / carbon nanotube ternary composite casting films. J. Polym. Res. 27, 153 (2020). https://doi.org/10.1007/s10965-020-02141-1

    Article  CAS  Google Scholar 

  8. H.-G. Xu, M.-C. Qu, Y.-M. Pan, D.W. Schubert, Conductivity of poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black ternary composite films. Chin. J. Polym. Sci. 38, 288–297 (2020). https://doi.org/10.1007/s10118-020-2349-2

    Article  CAS  Google Scholar 

  9. F. Zou, X. Liao, P. Song et al., Enhancement of electrical conductivity and electromagnetic interference shielding performance via supercritical CO2 induced phase coarsening for double percolated polymer blends. Nano Res 16, 613–623 (2023). https://doi.org/10.1007/s12274-022-4867-4

    Article  CAS  Google Scholar 

  10. Y. Li, S. Wang, Y. Zhang, Y. Zhang, Carbon black-filled immiscible polypropylene/epoxy blends. J. Appl. Polym. Sci. 99, 461–471 (2006). https://doi.org/10.1002/app.22011

    Article  CAS  Google Scholar 

  11. X. Zhang, S. Zheng, H. Zou et al., Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific “island-bridge” electrical conductive networks in HDPE/PVDF/CNF composite. Compos. Part A Appl. Sci. Manuf. 94, 21–31 (2017). https://doi.org/10.1016/j.compositesa.2016.12.001

    Article  CAS  Google Scholar 

  12. C. Zhang, X.S. Yi, H. Yui et al., Selective location and double percolation of short carbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene. Mater. Lett. 36, 186–190 (1998). https://doi.org/10.1016/S0167-577X(98)00023-8

    Article  CAS  Google Scholar 

  13. S. Kumar, R.I. Singh, S.S. Koloor et al., On Laminated object manufactured FDM-printed ABS/TPU multimaterial specimens: an insight into mechanical and morphological characteristics. Polymers (Basel) (2022). https://doi.org/10.3390/polym14194066

    Article  PubMed  PubMed Central  Google Scholar 

  14. I. Singh, S.R. Kumar, S.S. Koloor et al., On comparison of heat treated and non-heat-treated LOM manufactured sample for poly(lactic)acid: mechanical and morphological view point. Polymers (Basel) (2022). https://doi.org/10.3390/polym14235098

    Article  PubMed  PubMed Central  Google Scholar 

  15. S. Kumar, I. Singh, D. Kumar et al., Mechanical and morphological characterizations of laminated object manufactured 3D printed biodegradable poly(lactic)acid with various physical configurations. J. Mar. Sci. Eng. (2022). https://doi.org/10.3390/jmse10121954

    Article  Google Scholar 

  16. R. Gogoi, A.K. Maurya, G. Manik, A review on recent development in carbon fiber reinforced polyolefin composites. Compos. Part C: Open Access. 8, 100279 (2022). https://doi.org/10.1016/j.jcomc.2022.100279

    Article  CAS  Google Scholar 

  17. E.M. Abdelrazek, A.M. Hezma, A. El-khodary et al., Modifying of structural, optical, thermal, and mechanical properties of PCL/PMMA biomaterial blend doped with MWCNTs as an application in materials science. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02625-9

    Article  Google Scholar 

  18. P.S. Jadhav, S.S. Humbe, G.M. Joshi et al., Polymer blend nanoarchitectonics with exfoliated molybdenum disulphide/polyvinyl chloride/nitrocellulose. J. Inorg. Organomet. Polym. Mater. 33, 680–693 (2023). https://doi.org/10.1007/s10904-022-02518-3

    Article  CAS  Google Scholar 

  19. H.A.H. Alzahrani, CuO and MWCNTs nanoparticles filled PVA–PVP nanocomposites: morphological, optical, thermal, dielectric, and electrical characteristics. J. Inorg. Organomet. Polym. Mater. 32, 1913–1923 (2022). https://doi.org/10.1007/s10904-022-02233-z

    Article  CAS  Google Scholar 

  20. J. Joseph, K. Deshmukh, A.N. Raj, S.K.K. Pasha, Electromagnetic interference shielding characteristics of SrTiO3 nanoparticles induced polyvinyl chloride and polyvinylidene fluoride blend nanocomposites. J. Inorg. Organomet. Polym. Mater. 31, 3481–3495 (2021). https://doi.org/10.1007/s10904-021-01959-6

    Article  CAS  Google Scholar 

  21. A. Hashim, Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J. Inorg. Organomet. Polym. Mater. 30, 3894–3906 (2020). https://doi.org/10.1007/s10904-020-01528-3

    Article  CAS  Google Scholar 

  22. A.S. El-Bayoumi, Influence of the gamma radiation on the structure of PVDF/PANI blend. J. Inorg. Organomet. Polym. Mater. 30, 613–621 (2020). https://doi.org/10.1007/s10904-019-01311-z

    Article  CAS  Google Scholar 

  23. S.S. Devangamath, B. Lobo, Structural, optical and electrical studies on hybrid material of in situ formed silver sulfide in polymer blend matrix. J. Inorg. Organomet. Polym. Mater. 29, 1466–1475 (2019). https://doi.org/10.1007/s10904-019-01110-6

    Article  CAS  Google Scholar 

  24. E. Dhanumalayan, G.M. Joshi, High performance thermoplastic blends modified by potassium hexatitanate for dielectric applications. J. Inorg. Organomet. Polym. Mater. 28, 1775–1786 (2018). https://doi.org/10.1007/s10904-018-0835-6

    Article  CAS  Google Scholar 

  25. D. Vanitha, S.A. Bahadur, N. Nallamuthu et al., Electrical impedance studies on sodium ion conducting composite blend polymer electrolyte. J. Inorg. Organomet. Polym. Mater. 27, 257–265 (2017). https://doi.org/10.1007/s10904-016-0468-6

    Article  CAS  Google Scholar 

  26. P. Jayakrishnan, M.T. Ramesan, Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl alcohol) blend nanocomposites. J. Inorg. Organomet. Polym. Mater. 27, 323–333 (2017). https://doi.org/10.1007/s10904-016-0474-8

    Article  CAS  Google Scholar 

  27. A.B. Afzal, M.J. Akhtar, Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. J. Inorg. Organomet. Polym. Mater. 20, 783–792 (2010). https://doi.org/10.1007/s10904-010-9405-2

    Article  CAS  Google Scholar 

  28. L. Zhao, W. Xia, P. Zhang, Economical conductive graphite-filled polymer composites via adjustable segregated structures: construction, low percolation threshold, and positive temperature coefficient effect. J Appl Polym Sci. 138, 50295 (2021). https://doi.org/10.1002/app.50295

    Article  CAS  Google Scholar 

  29. R. Gheisari, A.A. Polycarpou, Tribological performance of graphite-filled polyimide and PTFE composites in oil-lubricated three-body abrasive conditions. Wear 436–437, 203044 (2019). https://doi.org/10.1016/j.wear.2019.203044

    Article  CAS  Google Scholar 

  30. B. Wen, X. Zheng, Effect of the selective distribution of graphite nanoplatelets on the electrical and thermal conductivities of a polybutylene terephthalate/polycarbonate blend. Compos. Sci. Technol. 174, 68–75 (2019). https://doi.org/10.1016/j.compscitech.2019.02.017

    Article  CAS  Google Scholar 

  31. C. Celik, S.B. Warner, Analysis of the structure and properties of expanded graphite-filled poly(phenylene ether)/atactic polystyrene nanocomposite fibers. J. Appl. Polym. Sci. 103, 645–652 (2007). https://doi.org/10.1002/app.23772

    Article  CAS  Google Scholar 

  32. M. Liebscher, J. Domurath, M. Saphiannikova et al., Dispersion of graphite nanoplates in melt mixed PC/SAN polymer blends and its influence on rheological and electrical properties. Polymer (Guildf) 200, 122577 (2020). https://doi.org/10.1016/j.polymer.2020.122577

    Article  CAS  Google Scholar 

  33. Y.-H. Xue, S.-C. Yan, Y. Chen, Thermomechanical and tribological properties of polyimide and polyethersulfone blends reinforced with expanded graphite particles at various elevated temperatures. J. Appl. Polym. Sci. 139, e52512 (2022). https://doi.org/10.1002/app.52512

    Article  CAS  Google Scholar 

  34. H. Mao, D. Liu, N. Zhang et al., Constructing a microcapacitor network of carbon nanotubes in polymer blends via crystallization-induced phase separation toward high dielectric constant and low loss. ACS Appl. Mater. Interf. 12, 26444–26454 (2020). https://doi.org/10.1021/acsami.0c04575

    Article  CAS  Google Scholar 

  35. S. Zhou, A.N. Hrymak, M.R. Kamal, Properties of microinjection-molded multi-walled carbon nanotubes-filled poly(lactic acid)/poly[(butylene succinate)-co-adipate] blend nanocomposites. J. Mater. Sci. 53, 9013–9025 (2018). https://doi.org/10.1007/s10853-018-2193-8

    Article  CAS  Google Scholar 

  36. Y. Wei, R. Huang, P. Dong et al., Preparation of polylactide/poly(ether)urethane blends with excellent electro-actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers. Chin. J. Polym. Sci. 36, 1175–1186 (2018). https://doi.org/10.1007/s10118-018-2138-3

    Article  CAS  Google Scholar 

  37. A.E. Zaikin, A.R. Akhmetov, Formation of the percolation network by carbon black particles in blends of incompatible polymers under the conditions of shear strain of the melt. Russ. J. Appl. Chem. 94, 954–958 (2021). https://doi.org/10.1134/S1070427221070132

    Article  CAS  Google Scholar 

  38. Y. Kou, A.T. Cote, J. Liu et al., Robust networks of interfacial localized graphene in cocontinuous polymer blends. J. Rheol. (N Y N Y) 65, 1139–1153 (2021). https://doi.org/10.1122/8.0000294

    Article  CAS  Google Scholar 

  39. L. Bai, R. Sharma, X. Cheng, C.W. Macosko, Kinetic control of graphene localization in co-continuous polymer blends via melt compounding. Langmuir 34, 1073–1083 (2018). https://doi.org/10.1021/acs.langmuir.7b03085

    Article  CAS  PubMed  Google Scholar 

  40. Y. Kou, X. Cheng, C.W. Macosko, Polymer/graphene composites via spinodal decomposition of miscible polymer blends. Macromolecules 52, 7625–7637 (2019). https://doi.org/10.1021/acs.macromol.9b01391

    Article  CAS  Google Scholar 

  41. R. Bo, J. Wang, C. Wang et al., Selective distribution of BaTiO3 and graphene in PS/PVDF blends: Molecular dynamics simulations. Mater. Today Commun. 34, 105247 (2023). https://doi.org/10.1016/j.mtcomm.2022.105247

    Article  CAS  Google Scholar 

  42. L. Zheng, G.-X. Liao, T.-S. Gu et al., Modified continuous carbon fiber-reinforced poly(phthalazinone ether sulfone ketone) composites by blending polyetherimide and polyethersulfone. Polym. Compos. 30, 1842–1847 (2009). https://doi.org/10.1002/pc.20757

    Article  CAS  Google Scholar 

  43. J. Ramachandran, M. Lu, P.J. Arias-Monje et al., Towards designing strong porous carbon fibers through gel spinning of polymer blends. Carbon N Y 173, 724–735 (2021). https://doi.org/10.1016/j.carbon.2020.10.029

    Article  CAS  Google Scholar 

  44. P. Tsotra, K. Friedrich, Short carbon fiber reinforced epoxy resin/polyaniline blends: their electrical and mechanical properties. Compos. Sci. Technol. 64, 2385–2391 (2004). https://doi.org/10.1016/j.compscitech.2004.05.003

    Article  CAS  Google Scholar 

  45. O. Ayotunde Alo, I. Olatunji Otunniyi, H.C. Pienaar, E. Rotimi Sadiku, Electrical and mechanical properties of polypropylene/epoxy blend-graphite/carbon black composite for proton exchange membrane fuel cell bipolar plate. Mater. Today Proc. 38, 658–662 (2021). https://doi.org/10.1016/j.matpr.2020.03.642

    Article  CAS  Google Scholar 

  46. O.A. Alo, I.O. Otunniyi, H.C. Pienaar, Development of graphite-filled polymer blends for application in bipolar plates. Polym. Compos. 41, 3364–3375 (2020). https://doi.org/10.1002/pc.25625

    Article  CAS  Google Scholar 

  47. N.A. Mohd Radzuan, M. Yusuf Zakaria, A.B. Sulong, J. Sahari, The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Compos. B Eng. 110, 153–160 (2017). https://doi.org/10.1016/j.compositesb.2016.11.021

    Article  CAS  Google Scholar 

  48. R. Taherian, M.J. Hadianfard, A.N. Golikand, Manufacture of a polymer-based carbon nanocomposite as bipolar plate of proton exchange membrane fuel cells. Mater. Des. 49, 242–251 (2013). https://doi.org/10.1016/j.matdes.2013.01.058

    Article  CAS  Google Scholar 

  49. Y. Li, S. Wang, Y. Zhang, Y. Zhang, Electrical properties and morphology of polypropylene/epoxy/glass fiber composites filled with carbon black. J. Appl. Polym. Sci. 98, 1142–1149 (2005). https://doi.org/10.1002/app.22105

    Article  CAS  Google Scholar 

  50. G.M. Raja, A. Vasanthanathan, K. Jeyasubramanian, Novel ternary epoxy resin composites obtained by blending graphene oxide and polypropylene fillers: an avenue for the enhancement of mechanical characteristics. J. Inorg. Organomet. Polym. Mater. (2022). https://doi.org/10.1007/s10904-022-02494-8

    Article  Google Scholar 

  51. S. Hirano, R&D for Automotive PEM Fuel Cell System—Bipolar Plates DOE Bipolar Plate Workshop. (Southfield, Michigan, 2017)

  52. Bipolar Plate Workshop Summary Report. (U.S. Department of Energy Fuel Cell Technologies Office (FCTO), 2017)

  53. S.M.S. Al-Mufti, S.J.A. Rizvi, Thermoset-based composite bipolar plates in proton exchange membrane fuel cell, in Proton exchange membrane fuel cells. ed. by S.M.S. Al-Mufti, S.J.A. Rizvi (Wiley, New york, 2023), pp.137–211

    Chapter  Google Scholar 

  54. C.R. Raajeshkrishna, P. Chandramohan, Effect of reinforcements and processing method on mechanical properties of glass and basalt epoxy composites. SN Appl. Sci. 2, 959 (2020). https://doi.org/10.1007/s42452-020-2774-4

    Article  CAS  Google Scholar 

  55. O.T. Sanya, B. Oji, S.S. Owoeye, E.J. Egbochie, Influence of particle size and particle loading on mechanical properties of silicon carbide–reinforced epoxy composites. Int. J. Adv. Manufact. Technol. 103, 4787–4794 (2019). https://doi.org/10.1007/s00170-019-04009-1

    Article  Google Scholar 

  56. S.J.A. Rizvi, N. Bhatnagar, Microcellular PP vs. microcellular PP/MMT nanocomposites: a comparative study of their mechanical behavior. Int. Poly. Proc. 26, 375–382 (2011). https://doi.org/10.3139/217.2375

    Article  CAS  Google Scholar 

  57. O.A. Alo, I.O. Otunniyi, Electrical conductivity of polyethylene/epoxy/graphite/carbon black composites: synergy of blend immiscibility and hybrid filler. Poly.-Plastics Technol. Mater. 60, 2075–2088 (2021). https://doi.org/10.1080/25740881.2021.1948056

    Article  CAS  Google Scholar 

  58. M.S. Santosh, S. Purushotham, P. Gopinathan et al., Natural sub-bituminous coal as filler enhances mechanical, insulation and flame retardant properties of coir–polypropylene bio-composites. Environ. Geochem. Health (2023). https://doi.org/10.1007/s10653-023-01489-9

    Article  PubMed  Google Scholar 

  59. S. Asai, K. Sakata, M. Sumita, K. Miyasaka, Effect of interfacial free energy on the heterogeneous distribution of oxidized carbon black in polymer blends. Polym J 24, 415–420 (1992). https://doi.org/10.1295/polymj.24.415

    Article  CAS  Google Scholar 

  60. Q.-Q. Yang, J.-Z. Liang, Electrical properties and morphology of carbon black-filled HDPE/EVA composites. J. Appl. Polym. Sci. 117, 1998–2002 (2010). https://doi.org/10.1002/app.32117

    Article  CAS  Google Scholar 

  61. F.M. Fowkes, Additivity of intermolecular forces at interfaces. I. Determination of the contribution to surface and interfacial tensions of dispersion forces in various liquids1. J. Phys. Chem. 67, 2538–2541 (1963). https://doi.org/10.1021/j100806a008

    Article  CAS  Google Scholar 

  62. A. Cayla, C. Campagne, M. Rochery, E. Devaux, Electrical, rheological properties and morphologies of biphasic blends filled with carbon nanotubes in one of the two phases. Synth. Met. 161, 1034–1042 (2011). https://doi.org/10.1016/j.synthmet.2011.03.012

    Article  CAS  Google Scholar 

  63. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol. Mater. Eng. 293, 789 (2008). https://doi.org/10.1002/mame.200800222

    Article  CAS  Google Scholar 

  64. S. Wu, Polymer Interface and Adhesion, 1st edn. (Routledge, 1982). https://doi.org/10.1201/9780203742860

  65. D. Jiang, L. Xing, L. Liu et al., Interfacially reinforced unsaturated polyester composites by chemically grafting different functional POSS onto carbon fibers. J. Mater. Chem. A Mater. 2, 18293–18303 (2014). https://doi.org/10.1039/C4TA04055D

    Article  CAS  Google Scholar 

  66. Y. Pan, X. Liu, X. Hao et al., Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur. Polym. J. 78, 106–115 (2016). https://doi.org/10.1016/j.eurpolymj.2016.03.019

    Article  CAS  Google Scholar 

  67. R. Shi, C.G. Ma, M. Liu, Selective distribution of carbon black in epoxy resin/thermoplastic multiphase composites. Adv. Mat. Res. 652–654, 73–76 (2013). https://doi.org/10.4028/www.scientific.net/AMR.652-654.73

    Article  CAS  Google Scholar 

  68. J.R. Abbott, B.G. Higgins, Surface tension of a curing epoxy. J. Polym. Sci. A Polym. Chem. 26, 1985–1988 (1988). https://doi.org/10.1002/pola.1988.080260724

    Article  CAS  Google Scholar 

  69. A. Saalbrink, A. Lorteije, T. Peijs, The influence of processing parameters on interphase morphology in polymer composites based on phase-separating thermoplast/epoxy blends. Compos. Part A Appl. Sci. Manuf. 29, 1243–1250 (1998). https://doi.org/10.1016/S1359-835X(98)00043-8

    Article  Google Scholar 

  70. M. Sharma, I. Mohan Rao, J. Bijwe, Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber-polyetherimide composites. Tribol. Int. 43, 959–964 (2010). https://doi.org/10.1016/j.triboint.2009.12.064

    Article  CAS  Google Scholar 

  71. V.S. Mironov, J.K. Kim, M. Park et al., Comparison of electrical conductivity data obtained by four-electrode and four-point probe methods for graphite-based polymer composites. Polym. Test. 26, 547–555 (2007). https://doi.org/10.1016/j.polymertesting.2007.02.003

    Article  CAS  Google Scholar 

  72. R. Yeetsorn, Development of electrically conductive thermoplastic composites for bipolar plate application in polymer electrolyte membrane fuel cell. Theses, University of Waterloo, Waterloo, Ontario, Canada, 2010. http://hdl.handle.net/10012/5578

  73. S.F. Wang, A.A. Ogale, Simulation of percolation behavior of anisotropic short-fiber composites with a continuum model and non-cubic control geometry. Compos. Sci. Technol. 46, 389–398 (1993). https://doi.org/10.1016/0266-3538(93)90184-I

    Article  Google Scholar 

  74. C. Unterweger, T. Mayrhofer, F. Piana et al., Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites. Compos. Sci. Technol. 188, 107998 (2020). https://doi.org/10.1016/j.compscitech.2020.107998

    Article  CAS  Google Scholar 

  75. G. Guo, V.L. Finkenstadt, Y. Nimmagadda, Mechanical properties and water absorption behavior of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites. Adv. Compos. Hybrid Mater. 2, 690–700 (2019). https://doi.org/10.1007/s42114-019-00116-5

    Article  CAS  Google Scholar 

  76. C. Venkatesh, R. Nerella, M.S.R. Chand, Role of red mud as a cementing material in concrete: a comprehensive study on durability behavior. Innovative Infrastruct. Sol. 6, 13 (2020). https://doi.org/10.1007/s41062-020-00371-2

    Article  Google Scholar 

  77. L. Wang, X. Dong, X. Wang et al., High performance long chain polyamide/calcium silicate whisker nanocomposites and the effective reinforcement mechanism. Chin. J. Polym. Sci. 34, 991–1000 (2016). https://doi.org/10.1007/s10118-016-1812-6

    Article  CAS  Google Scholar 

  78. A.A. Ramachandran, L.P. Mathew, S. Thomas, Effect of MA-g-PP compatibilizer on morphology and electrical properties of MWCNT based blend nanocomposites: new strategy to enhance the dispersion of MWCNTs in immiscible poly (trimethylene terephthalate)/polypropylene blends. Eur. Polym. J. 118, 595–605 (2019). https://doi.org/10.1016/j.eurpolymj.2019.06.027

    Article  CAS  Google Scholar 

  79. M. Li, X. Wen, J. Liu, T. Tang, Synergetic effect of epoxy resin and maleic anhydride grafted polypropylene on improving mechanical properties of polypropylene/short carbon fiber composites. Compos. Part A Appl. Sci. Manuf. 67, 212–220 (2014). https://doi.org/10.1016/j.compositesa.2014.09.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Indian Oil Corporation Limited, Faridabad-121007 (India) for providing the facilities for synthesizing the composites. They also extend their appreciation to Prof. N. Bhatnagar, Department of Mechanical Engineering, IIT Delhi, India for supplying the carbon fiber.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

SMSA and SJAR: designed the study. VKK: prepared the composites. SMSA: performed the measurements, and analyzed the results. SMSA and AA: wrote the paper. AA: conceptualized the manuscript, performed SEM analysis, and analyzed the overall results. SJAR: analyzed the results, reviewed, and edited the manuscript. All authors were involved in the evaluation of results. All authors have reviewed and agreed to publish the final version of the manuscript.

Corresponding authors

Correspondence to Salah M. S. Al-Mufti or S. J. A. Rizvi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mufti, S.M.S., Almontasser, A., Rizvi, S.J.A. et al. Innovative Approach to Fuel Cell Bipolar Plate Using Conductive Polymer Blend Composites: Selective Localization of Carbon Fiber at the Interface of Polymer Blends. J Inorg Organomet Polym 33, 2618–2635 (2023). https://doi.org/10.1007/s10904-023-02681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02681-1

Keywords

Navigation