Skip to main content
Log in

Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate) (PMMA)/polystyrene (PS)/carbon black (CB) and poly(ethyl methacrylate) (PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect. In both PMMA/PS/CB and PEMA/PS/CB ternary composite films, the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient, which is also confirmed by SEM images. The conductivity of the films was investigated, and the percolation threshold (ϕc) of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation. Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect. However, due to the double emulsion structure of PEMA/PS polymer blends, the PEMA/PS/CB ternary composite films (PEMA/PS = 50/50) showed a higher ϕc, even CB only located in PS phase, which conflicts with the double percolation effect. A schematic diagram combined with SEM images was proposed to explain this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. H.; Li, C. H.; Pan, Y. M.; Schubert, D. W.; Liu, C. T. Shear-induced rheological and electrical properties of molten poly (methyl methacrylate)/carbon black nanocomposites. Compos. Part B Eng.2019, 164, 37–44.

    Article  CAS  Google Scholar 

  2. Gulrez, S. K.; Ali Mohsin, M. E.; Shaikh, H.; Anis, A.; Pulose, A. M.; Yadav, M. K.; Qua, E. H.; Al-Zahrani, S. M. A review on electrically conductive polypropylene and polyethylene. Polym. Compos.2014, 35, 900–914.

    Article  CAS  Google Scholar 

  3. Krause, B.; Boldt, R.; Häußler, L.; Pötschke, P. Ultralow percolation threshold in polyamide 6.6/MWCNT composites. Compos. Sci. Technol.2015, 114, 119–125.

    Article  CAS  Google Scholar 

  4. Zhang, C.; Liu, X. H.; Liu, H.; Wang, Y. M.; Guo, Z. H.; Liu, C. T. Multi-walled carbon nanotube in a miscible PEO/PMMA blend: Thermal and rheological behavior. Polym. Test.2019, 75, 367–372.

    Article  CAS  Google Scholar 

  5. Zhang, F. F; Liu, X. H.; Zheng, G. Q.; Guo, Z. H.; Liu, C. T.; Shen, C. Y. Facile route to improve the crystalline memory effect: Electrospun composite fiber and annealing. Macromol. Chem. Phys.2018, 219, 1800236.

    Article  Google Scholar 

  6. Al-Saleh, M. H.; Sundararaj, U. An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends. Compos. Part A Appl. S.2008, 39, 284–293.

    Article  Google Scholar 

  7. Starý, Z.; Krückel, J.; Weck, C.; Schubert, D. W. Rheology and conductivity of carbon fibre composites with defined fibre lengths. Compos. Sci. Technol.2013, 85, 58–64.

    Article  Google Scholar 

  8. Huang, J. C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol.2002, 21, 299–313.

    Article  CAS  Google Scholar 

  9. Chen, J. W.; Cui, X. H.; Sui, K. Y.; Zhu, Y. T.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol.2017, 140, 99–105.

    Article  CAS  Google Scholar 

  10. Pan, Y. M.; Liu, X. H.; Hao, X. Q.; Starý, Z.; Schubert, D. W. Enhancing the electrical conductivity of carbon black-filled immiscible polymer blends by tuning the morphology. Eur. Polym. J.2016, 78, 106–115.

    Article  CAS  Google Scholar 

  11. Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull.1991, 25, 265–271.

    Article  CAS  Google Scholar 

  12. Gubbels, F.; Jérôme, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V. Brédas, J. L. Selective localization of carbon black in immiscible polymer blends: A useful tool to design electrical conductive composites. Macromolecules1994, 27, 1972–1974.

    Article  CAS  Google Scholar 

  13. Foulger, S. H. Reduced percolation thresholds of immiscible conductive blends of poly (ethylene-co-vinyl acetate) and high density polyethylene. Conference on electrical insulation and dielectric phenomena. IEEE Annual Report. 1998, Vol. 1, p. 282–287).

    Google Scholar 

  14. Xu, Z. B.; Zhao, C.; Gu, A. J; Fang, Z. P.; Tong, L. F. Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black. J. Appl. Polym. Sci.2007, 106, 2008–2017.

    Article  CAS  Google Scholar 

  15. Cheah, K.; Forsyth, M.; Simon, G. P. Processing and morphological development of carbon black filled conducting blends using a binary host of poly(styrene-co-acrylonitrile) and poly(styrene). J. Polym. Sci., Part B: Polym. Phys.2000, 38, 3106–3119.

    Article  CAS  Google Scholar 

  16. Calberg, C.; Blacher, S.; Gubbels, F.; Brouers, F.; Deltour, R.; Jérôme, R. Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J. Phys. D Appl. Phys.1999, 32, 1517.

    Article  CAS  Google Scholar 

  17. Mamunya, Y.; Levchenko, V.; Boiteux, G.; Seytre, G.; Zanoaga, M.; Tanasa, F.; Lebedev, E. Controlling morphology, electrical, and mechanical properties of polymer blends by heterogeneous distribution of carbon nanotubes. Polym. Compos. 2016, 37, 2467–2477.

    Article  CAS  Google Scholar 

  18. Nasti, G.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V. Double percolation of multiwalled carbon nanotubes in polystyrene/polylactic acid blends. Polymer2016, 99, 193–203.

    Article  CAS  Google Scholar 

  19. Chen, Y.; Yang, Q.; Huang, Y. J.; Liao, X.; Niu, Y. H. Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer2015, 79, 159–170.

    Article  CAS  Google Scholar 

  20. Dil, E. J.; Favis, B. D. Localization of micro and nano-silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer2015, 77, 156–166.

    Article  Google Scholar 

  21. Harrats, C.; Groeninckx, G.; Thomas, S. Micro-and nanostructured multiphase polymer blend systems: Phase morphology and interfaces. CRC press, 2015.

  22. Utrachi, L. A. Polymer alloys and blends. 1990, Chapter 3.

  23. Paul, D. R.; Barlow, J. W. Polymer blends. J. Macromol. Sci. R. M. C. 1980, 18, 109–168.

    Article  Google Scholar 

  24. Kim, J. H.; Park, D. S.; Kim, C. K. Characterization of the interaction energies for polystyrene blends with various methacrylate polymers. J. Polym. Sci., Part B: Polym. Phys.2000, 38, 2666–2677.

    Article  CAS  Google Scholar 

  25. Schubert, D. W.; Stamm, M.; Müller, A. H. E. Neutron reflectometry studies on the interfacial width between polystyrene and various poly(alkylmethacrylates). Polym. Eng. Sci.1999, 39, 1501–1507.

    Article  CAS  Google Scholar 

  26. Voulgaris, D.; Petridis, D. Emulsifying effect of dimethyldiocta-decylammonium-hectorite in polystyrene/poly(ethyl methacrylate) blends. Polymer2002, 43, 2213–2218.

    Article  CAS  Google Scholar 

  27. Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol.2016, 123, 17–31.

    Article  CAS  Google Scholar 

  28. Radzuan, N. A. M.; Sulong, A. B.; Sahari, J. A review of electrical conductivity models for conductive polymer composite. Int. J Hydrogen Energ.2017, 42, 9262–9273.

    Article  Google Scholar 

  29. McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical resistivity of composites. J. Am. Ceram. Soc.1990, 73, 2187–2203.

    Article  CAS  Google Scholar 

  30. Sahini, M.; Sahimi, M. Applications of percolation theory. CRC Press, 2014.

  31. Liu, X. H.; Krückel, J.; Zheng, G. Q.; Schubert, D. W. Mapping the electrical conductivity of poly (methyl methacrylate)/carbon black composites prior to and after shear. ACS Appl. Mater. Interfaces2013, 5, 8857–8860.

    Article  CAS  Google Scholar 

  32. Starý, Z. Thermodynamics and morphology and compatibilization of polymer blends. in Characterization of polymer blends. Eds. by Thomas, S.; Grohens, Y.; Jyotishkumar, P. Wiley-VCH Verlag GmbH & Co. KGaA, 2014, 93–132.

  33. Pajula, K.; Taskinen, M.; Lehto, V. P.; Ketolainen, J.; Korhonen, O. Predicting the formation and stability of amorphous small molecule binary mixtures from computationally determined Flory-Huggins interaction parameter and phase diagram. Mol. Pharmaceut.2010, 7, 795–804.

    Article  CAS  Google Scholar 

  34. Gedde, U. W. Polymer physics. Springer Science & Business Media, 2013.

  35. Sammler, R. L.; Dion, R. P.; Carriere, C. J.; Cohen, A. Compatibility of high polymers probed by interfacial tension. Rheol. Acta1992, 31, 554–564.

    Article  CAS  Google Scholar 

  36. Schubert, D. W.; Stamm, M. Influence of chain length on the interface width of an incompatible polymer blend. EPL1996, 35, 419.

    Article  CAS  Google Scholar 

  37. Wu, S. Polymer interfaces and adhesion. Marcel Dekker, New York, 1982.

    Google Scholar 

  38. Deng, H.; Lin, L.; Ji, M. Z.; Zhang, S. M.; Yang, M. B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci.2014, 39, 627–655.

    Article  CAS  Google Scholar 

  39. Baudouin, A. C.; Devaux, J.; Bailly, C. Localization of carbon nanotubes at the interface in blends of polyamide and ethyleneacrylate copolymer. Polymer2010, 51, 1341–1354.

    Article  CAS  Google Scholar 

  40. https://www.surface-tension.desolid-surface-energy.htm

  41. Cao, Q.; Song, Y. H.; Tan, Y. Q.; Zheng, Q. Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing. Carbon2010, 48, 4268–4275.

    Article  CAS  Google Scholar 

  42. Pan, Y. M.; Liu, X. H.; Kaschta, J.; Liu, C. T.; Schubert, D. W. Reversal phenomena of molten immiscible polymer blends during creep-recovery in shear. J. Rheol.2017, 61, 759–767.

    Article  CAS  Google Scholar 

  43. Liu, T.; Huang, K. Q.; Li, L. W.; Gu, Z. P.; Liu, X. H.; Peng, X. F.; Kuang, T. R. High performance high-density polyethylene/hydroxyapatite nanocomposites for load-bearing bone substitute: Fabrication, in vitro and in vivo biocompatibility evaluation. Compos. Sci. Technol.2019, 175, 100–110.

    Article  CAS  Google Scholar 

  44. Elias, L.; Fenouillot, F.; Majesté, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: Rheology and effective interfacial tension. Polymer2008, 49, 4378–4385.

    Article  CAS  Google Scholar 

  45. Fenouillot, F.; Cassagnau, P.; Majesté, J. C. Uneven distribution of nanoparticles in immiscible fluids: Morphology development in polymer blends. Polymer2009, 50, 1333–1350.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Huagen Xu acknowledges the China Scholarship Council for funding a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Gen Xu.

Electronic Supplementary Information

10118_2020_2349_MOESM1_ESM.pdf

Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HG., Qu, MC., Pan, YM. et al. Conductivity of Poly(methyl methacrylate)/Polystyrene/Carbon Black and Poly(ethyl methacrylate)/Polystyrene/Carbon Black Ternary Composite Films. Chin J Polym Sci 38, 288–297 (2020). https://doi.org/10.1007/s10118-020-2349-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2349-2

Keywords

Navigation