Skip to main content
Log in

Effectiveness of Silicon Dioxide Nanoparticles (Nano SiO2) on the Internal Structures, Electrical Conductivity, and Elevated Temperature Behaviors of Geopolymer Concrete Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The swift growth of urban areas and industries has resulted in a rise in concrete production and subsequent depletion of resources as well as environmental pollution. In light of environmental considerations, it has become imperative to discover and advance alternative binding construction materials that can substitute conventional Portland cement. Geopolymers have emerged as a viable solution to this issue. Geopolymer composites can benefit from unique attributes and improved performance through the use of nanomaterials. This is achieved by augmenting the composite’s microstructural features, creating additional C-S-H, N-A-S-H, and C-A-S-H gels, and filling in nanopores within the matrix. In this paper, extensive experimental laboratory works have been conducted to investigate the effects of adding different dosages (1, 2, 3, and 4%) of nano-silica (NS) particles on the setting times, compressive strength, splitting tensile strength, resistance to elevated temperatures, electrical resistivity, bulk electrical conductivity, thermogravimetric analysis and scanning electron microscopy of geopolymer concrete composites. As a result of the addition of NS, the mechanical strength, electrical conductivity, and thermal behavior of geopolymer concrete all improved by 21%, 36%, and 26%, respectively, in comparison to the control GPC mixture. Furthermore, according to SEM observations, the addition of NS improved the microstructural characteristics of the GPC specimens due to the formation of additional geopolymerization products. Finally, it was discovered through statistical and multivariate analysis that the developed model codes, such as ACI 318, ACI 363, AS3600, and CEB-FIP, are not suitable for predicting splitting tensile strength, electrical resistivity from their tested compressive strength values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. G. Habert, S.A. Miller, V.M. John, J.L. Provis, A. Favier, A. Horvath, K.L. Scrivener, Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 1(11), 559–573 (2020). https://doi.org/10.1038/s43017-020-0093-3

    Article  Google Scholar 

  2. E. Gartner, Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34(9), 1489–1498 (2004). https://doi.org/10.1016/j.cemconres.2004.01.021

    Article  CAS  Google Scholar 

  3. X. Guo, H. Shi, W.A. Dick, Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr. Compos. 32(2), 142–147 (2010). https://doi.org/10.1016/j.cemconcomp.2009.11.003

    Article  CAS  Google Scholar 

  4. H.U. Ahmed, A.A. Mohammed, A.S. Mohammad, The role of nanomaterials in geopolymer concrete composites: a state-of-the-art review. J. Build. Eng. (2022). https://doi.org/10.1016/j.jobe.2022.104062

    Article  Google Scholar 

  5. J.L. Provis, S.A. Bernal, Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327 (2014). https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  CAS  Google Scholar 

  6. J. Davidovits, Polymers and geopolymers. Geopolymer Chemistry and Applications, 4th edn. (Institut Géopolymère, Saint Quentin, 2015)

    Google Scholar 

  7. H.U. Ahmed, A.A. Mohammed, S. Rafiq, A.S. Mohammed, A. Mosavi, N.H. Sor, S. Qaidi, Compressive strength of sustainable geopolymer concrete composites: a state-of-the-art review. Sustainability 13(24), 13502 (2021). https://doi.org/10.3390/su132413502

    Article  CAS  Google Scholar 

  8. A.A. Mohammed, H.U. Ahmed, A. Mosavi, survey of mechanical properties of geopolymer concrete: a comprehensive review and data analysis. Materials 14(16), 4690 (2021). https://doi.org/10.3390/ma14164690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. A. Hassan, M. Arif, M. Shariq, Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Appl. Sci. 1(12), 1–9 (2019). https://doi.org/10.1007/s42452-019-1774-8

    Article  CAS  Google Scholar 

  10. H.U. Ahmed, A.A. Mohammed, A. Mohammed, Soft computing models to predict the compressive strength of GGBS/FA-geopolymer concrete. PLoS ONE 17(5), e0265846 (2022). https://doi.org/10.1371/journal.pone.0265846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. H.H. Sharif, Fresh and mechanical characteristics of eco-efficient geopolymer concrete incorporating nano-silica: an overview. Kurdistan J. Appl. Res. (2021). https://doi.org/10.24017/science.2021.2.6

    Article  Google Scholar 

  12. A. Lazaro, Q.L. Yu, H.J.H. Brouwers, Nanotechnologies for sustainable construction, in Sustainability of construction materials. (Woodhead Publishing, Sawston, 2016), pp.55–78

    Chapter  Google Scholar 

  13. B.B. Jindal, R. Sharma, The effect of nanomaterials on properties of geopolymers derived from industrial by-products: a state-of-the-art review. Constr. Build. Mater. 252, 119028 (2020)

    Article  CAS  Google Scholar 

  14. R.H. Faraj, H.U. Ahmed, S. Rafiq, N.H. Sor, D.F. Ibrahim, S.M. Qaidi, Performance of self-compacting mortars modified with nanoparticles: a systematic review and modeling. Cleaner Mater. (2022). https://doi.org/10.1016/j.clema.2022.100086

    Article  Google Scholar 

  15. K. Behfarnia, M. Rostami, Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr. Build. Mater. 131, 205–213 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.070

    Article  CAS  Google Scholar 

  16. S.M. Mustakim, S.K. Das, J. Mishra, A. Aftab, T.S. Alomayri, H.S. Assaedi, C.R. Kaze, Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. SILICON 13(8), 2415–2428 (2021). https://doi.org/10.1007/s12633-020-00593-0

    Article  CAS  Google Scholar 

  17. A. Çevik, R. Alzeebaree, G. Humur, A. Niş, M.E. Gülşan, Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram. Int. 44(11), 12253–12264 (2018). https://doi.org/10.1016/j.ceramint.2018.04.009

    Article  CAS  Google Scholar 

  18. M.A. Kotop, M.S. El-Feky, Y.R. Alharbi, A.A. Abadel, A.S. Binyahya, Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Eng. J. 12(4), 3641–3647 (2021). https://doi.org/10.1016/j.asej.2021.04.022

    Article  Google Scholar 

  19. G. Saini, U. Vattipalli, Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud. Constr. Mater. 12, e00352 (2020). https://doi.org/10.1016/j.cscm.2020.e00352

    Article  Google Scholar 

  20. F. Shahrajabian, K. Behfarnia, The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Constr. Build. Mater. 176, 172–178 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.033

    Article  CAS  Google Scholar 

  21. R. Alzeebaree, Bond strength and fracture toughness of alkali activated self-compacting concrete incorporating metakaolin or nanosilica. Sustainability 14(11), 6798 (2022). https://doi.org/10.3390/su14116798

    Article  CAS  Google Scholar 

  22. A. Mohammedameen, Performance of alkali-activated self-compacting concrete with incorporation of nanosilica and metakaolin. Sustainability 14(11), 6572 (2022). https://doi.org/10.3390/su14116572

    Article  CAS  Google Scholar 

  23. H.U. Ahmed, A.S. Mohammed, R.H. Faraj, S.M. Qaidi, A.A. Mohammed, Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations. Case Stud. Constr. Mater. (2022). https://doi.org/10.1016/j.cscm.2022.e01036

    Article  Google Scholar 

  24. M.S Reddy, P. Dinakar, & B.H. Rao, Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. J. Build. Eng. 20, 712–722 (2018)

    Article  Google Scholar 

  25. N. Li, C. Shi, Z. Zhang, H. Wang, & Y. Liu, A review on mixture design methods for geopolymer concrete. Compos. B. Eng. 178, 107490 (2019)

    Google Scholar 

  26. P. Chindaprasirt, U. Rattanasak, S. Taebuanhuad, Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater. Struct. 46(3), 375–381 (2013). https://doi.org/10.1617/s11527-012-9907-1

    Article  CAS  Google Scholar 

  27. G.F. Huseien, H.K. Hamzah, A.R.M. Sam, N.H.A. Khalid, K.W. Shah, D.P. Deogrescu, J. Mirza, Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. J. Clean. Prod. 243, 118636 (2020). https://doi.org/10.1016/j.jclepro.2019.118636

    Article  CAS  Google Scholar 

  28. M. Samadi, K.W. Shah, G.F. Huseien, N.H.A.S. Lim, Influence of glass silica waste nano powder on the mechanical and microstructure properties of alkali-activated mortars. Nanomaterials 10(2), 324 (2020). https://doi.org/10.3390/nano10020324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. X. Gao, Q.L. Yu, H.J.H. Brouwers, Characterization of alkali activated slag–fly ash blends containing nano-silica. Constr. Build. Mater. 98, 397–406 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.086

    Article  Google Scholar 

  30. T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Hanjitsuwan, S. Hatanaka, The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 55, 58–65 (2014). https://doi.org/10.1016/j.matdes.2013.09.049

    Article  CAS  Google Scholar 

  31. U. Durak, O. Karahan, B. Uzal, S. İlkentapar, C.D. Atiş, Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct. Concr. 22, E352–E367 (2021). https://doi.org/10.1002/suco.201900479

    Article  Google Scholar 

  32. M. Etemadi, M. Pouraghajan, H. Gharavi, Investigating the effect of rubber powder and nano silica on the durability and strength characteristics of geopolymeric concretes. J. Civil Eng. Mater. Appl. 4(4), 243–252 (2020). https://doi.org/10.22034/jcema.2020.119979

    Article  Google Scholar 

  33. P. Nuaklong, P. Jongvivatsakul, T. Pothisiri, V. Sata, P. Chindaprasirt, Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J. Clean. Prod. 252, 119797 (2020). https://doi.org/10.1016/j.jclepro.2019.119797

    Article  CAS  Google Scholar 

  34. A.A. Ramezanianpour, M.A. Moeini, Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Constr. Build. Mater. 163, 611–621 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.062

    Article  CAS  Google Scholar 

  35. K. Sun, X. Peng, S. Wang, L. Zeng, P. Ran, G. Ji, Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Constr. Build. Mater. 253, 118952 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118952

    Article  CAS  Google Scholar 

  36. J.M. Their, M. Özakça, Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr. Build. Mater. 180, 12–22 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.274

    Article  CAS  Google Scholar 

  37. S. Naskar, A.K. Chakraborty, Effect of nano materials in geopolymer concrete. Perspect. Sci. 8, 273–275 (2016). https://doi.org/10.1016/j.pisc.2016.04.049

    Article  Google Scholar 

  38. P. Zhang, K. Wang, J. Wang, J. Guo, S. Hu, Y. Ling, Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram. Int. 46(12), 20027–20037 (2020). https://doi.org/10.1016/j.ceramint.2020.05.074

    Article  CAS  Google Scholar 

  39. N. Hamed, M.S. El-Feky, M. Kohail, E.S.A. Nasr, Effect of nano-clay de-agglomeration on mechanical properties of concrete. Constr. Build. Mater. 205, 245–256 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.018

    Article  CAS  Google Scholar 

  40. B. Mahboubi, Z. Guo, H. Wu, Evaluation of durability behavior of geopolymer concrete containing nano-silica and nano-clay additives in acidic media. J. Civil Eng. Mater. Appl. 3(3), 163–171 (2019). https://doi.org/10.22034/JCEMA.2019.95839

    Article  Google Scholar 

  41. E. Rabiaa, R.A.S. Mohamed, W.H. Sofi, T.A. Tawfik, Developing geopolymer concrete properties by using nanomaterials and steel fibers. Adv. Mater. Sci. Eng. (2020). https://doi.org/10.1155/2020/5186091

    Article  Google Scholar 

  42. D. Adak, M. Sarkar, S. Mandal, Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr. Build. Mater. 135, 430–439 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.111

    Article  CAS  Google Scholar 

  43. S. Vyas, S. Mohammad, S. Pal, N. Singh, Strength and durability performance of fly ash based geopolymer concrete using nano silica. Int. J. Eng. Sci. Technol. 4(2), 1–12 (2020). https://doi.org/10.29121/ijoest.v4.i2.2020.73

    Article  Google Scholar 

  44. A. Nazari, A. Bagheri, J.G. Sanjayan, M. Dao, C. Mallawa, P. Zannis, S. Zumbo, Thermal shock reactions of ordinary portland cement and geopolymer concrete: microstructural and mechanical investigation. Constr. Build. Mater. 196, 492–498 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.098

    Article  CAS  Google Scholar 

  45. A. Fernández-Jiménez, J.Y. Pastor, A. Martín, A. Palomo, High-temperature resistance in alkali-activated cement. J. Am. Ceram. Soc. 93(10), 3411–3417 (2010). https://doi.org/10.1111/j.1551-2916.2010.03887.x

    Article  CAS  Google Scholar 

  46. W.D. Rickard, C.S. Kealley, A. Van Riessen, Thermally induced microstructural changes in fly ash geopolymers: experimental results and proposed model. J. Am. Ceram. Soc. 98(3), 929–939 (2015). https://doi.org/10.1111/jace.13370

    Article  CAS  Google Scholar 

  47. J. Zhao, K. Wang, S. Wang, Z. Wang, Z. Yang, E.D. Shumuye, X. Gong, Effect of elevated temperature on mechanical properties of high-volume fly ash-based geopolymer concrete, mortar and paste cured at room temperature. Polymers 13(9), 1473 (2021). https://doi.org/10.3390/polym13091473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. M. Ozawa, S. Uchida, T. Kamada, H. Morimoto, Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission. Constr. Build. Mater. 37, 621–628 (2012). https://doi.org/10.1016/j.conbuildmat.2012.06.070

    Article  Google Scholar 

  49. D.L. Kong, J.G. Sanjayan, Damage behavior of geopolymer composites exposed to elevated temperatures. Cement Concr. Compos. 30(10), 986–991 (2008). https://doi.org/10.1016/j.cemconcomp.2008.08.001

    Article  CAS  Google Scholar 

  50. D.L. Kong, J.G. Sanjayan, K. Sagoe-Crentsil, Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37(12), 1583–1589 (2007). https://doi.org/10.1016/j.cemconres.2007.08.021

    Article  CAS  Google Scholar 

  51. F. Farooq, X. Jin, M.F. Javed, A. Akbar, M.I. Shah, F. Aslam, R. Alyousef, Geopolymer concrete as sustainable material: a state of the art review. Constr. Build. Mater. 306, 124762 (2021)

    Article  CAS  Google Scholar 

  52. A.M. Rashad, A.S. Ouda, Thermal resistance of alkali-activated metakaolin pastes containing nano-silica particles. J. Therm. Anal. Calorim. 136(2), 609–620 (2019). https://doi.org/10.1007/s10973-018-7657-1

    Article  CAS  Google Scholar 

  53. F. Estrada-Arreola, J.J. Pérez-Bueno, F.J. Flores-Ruíz, E. León-Sarabia, F.J. Espinoza-Beltrán The effect of temperature on micro-mechanical properties of fly ash based geopolymers activated with nano-SiO2 solution by sol-gel technique. Microscopy: Adv. Sci. Res. Educ. 986–991 (2014)

  54. T. Revathi, R. Jeyalakshmi, N.P. Rajamane, Study on the role of n-SiO2 incorporation in thermo-mechanical and microstructural properties of ambient cured FA-GGBS geopolymer matrix. Appl. Surf. Sci. 449, 322–331 (2018). https://doi.org/10.1016/j.apsusc.2018.01.281

    Article  CAS  Google Scholar 

  55. D. Adak, M. Sarkar, S. Mandal, Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr. Build. Mater. 70, 453–459 (2014). https://doi.org/10.1016/j.conbuildmat.2014.07.093

    Article  Google Scholar 

  56. ACI Committee 222, Protection of metals in concrete against corrosion, ACI 222R-01, 2001.

  57. E. Mohseni, B.M. Miyandehi, J. Yang, M.A. Yazdi, Single and combined effects of nano-SiO2, nano-Al2O3 and nano-TiO2 on the mechanical, rheological and durability properties of self-compacting mortar containing fly ash. Constr. Build. Mater. 84, 331–340 (2015). https://doi.org/10.1016/j.conbuildmat.2015.03.006

    Article  Google Scholar 

  58. E. Mohseni, Assessment of Na2SiO3 to NaOH ratio impact on the performance of polypropylene fiber-reinforced geopolymer composites. Constr. Build. Mater. 186, 904–911 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.032

    Article  CAS  Google Scholar 

  59. A.A. Ramezanianpour, F. Bahman Zadeh, A. Zolfagharnasab, A.M. Ramezanianpour, Mechanical properties and chloride ion penetration of alkali activated slag concrete, in High tech concrete: where technology and engineering meet. (Springer, Cham, 2018), pp.2203–2212. https://doi.org/10.1007/978-3-319-59471-2_252

    Chapter  Google Scholar 

  60. H.U. Ahmed, A.S. Mohammed, A.A. Mohammed, R.H. Faraj, Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE 16(6), e0253006 (2021). https://doi.org/10.1371/journal.pone.0253006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. H.U. Ahmed, A.S. Mohammed, S.M.A. Qaidi, R.H. Faraj, N.H. Sor, A.A. Mohammed, Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. Eur. J. Environ. Civ. Eng. (2022). https://doi.org/10.1080/19648189.2022.2083022

    Article  Google Scholar 

  62. AS, A. S. 2001. Concrete structures. AS3600–2001. Sydney (Australia): Standards Australia.

  63. Committee Euro-International du Beton (CEB-FIP). CEB-FIP model code 1990, Thomas Telford, London; 1993.

  64. ACI, A. 2014. 318–14. Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, Michigan.

  65. ACI 363R-92. State-of-the-art report on high-strength concrete. ACI committee report 363. American Concrete Institute, Detroit, 363R1–363R55; 1992.

  66. Nihal Arioglu, Z. Canan Girgin, and Ergin Arioglu.,, “Evaluation of Ratio between Splitting Tensile strength and Compressive Strength for Concretes up to 120 MPa and its Application in Strength Criterion,” ACI Materials Journal., 103 91), pp19 - 24, 2006.

  67. M. Albitar, M.M. Ali, P. Visintin, M. Drechsler, Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Constr. Build. Mater. 83, 128–135 (2014). https://doi.org/10.1016/j.conbuildmat.2015.03.009

    Article  Google Scholar 

  68. G. Lavanya, J. Jegan, Evaluation of relationship between split tensile strength and compressive strength for geopolymer concrete of varying grades and molarity. Int. J. Appl. Eng. Res 10(15), 35523–35527 (2015)

    Google Scholar 

  69. Jaber, A., Gorgis, I., & Hassan, M. (2018). Relationship between splitting tensile and compressive strengths for self-compacting concrete containing nano-and micro silica. In MATEC Web of Conferences (Vol. 162, p. 02013). EDP Sciences.

  70. A.A. Ramezanianpour, A. Pilvar, M. Mahdikhani, F. Moodi, Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength. Constr. Build. Mater. 25(5), 2472–2479 (2011)

    Article  Google Scholar 

  71. R.A. Medeiros-Junior, M.G. Lima, M.H.F. Medeiros, L.V. Real, Investigation of the compressive strength and electrical resistivity of concrete with different types of cement. J. ALCONPAT 4, 113–128 (2014)

    Article  Google Scholar 

  72. D.H. de Bem, D.P.B. Lima, R.A. Medeiros-Junior, Effect of chemical admixtures on concrete’s electrical resistivity. Int. J. Build. Pathol. Adapt. 36(2), 174–187 (2018)

    Article  Google Scholar 

  73. C.C Araújo, & G.R Meira, Correlation between concrete strength properties and surface electrical resistivity. Revista IBRACON de Estruturas e Materiais, 15 (2021)

  74. C. Andrade, R. D’andrea, The electrical resistivity as a control parameter of the concrete and its durability. J. ALCONPAT 1, 90–98 (2011)

    Article  Google Scholar 

  75. X. Lu, F. Tong, X. Zha, G. Liu, Equivalent method for obtaining concrete age on the basis of electrical resistivity. Sci. Rep. 11(1), 1–12 (2021)

    Article  Google Scholar 

  76. K.P.V. Robles, J.J. Yee, S.H. Kee, Electrical resistivity measurements for nondestructive evaluation of chloride-induced deterioration of reinforced concrete—a review. Materials 15(8), 2725 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. J. Priou, Y. Lecieux, M. Chevreuil, V. Gaillard, C. Lupi, D. Leduc, F. Schoefs, In situ DC electrical resistivity mapping performed in a reinforced concrete wharf using embedded sensors. Constr. Build. Mater. 211, 244–260 (2019)

    Article  Google Scholar 

  78. R.S. Raj, G.P. Arulraj, N. Anand, B. Kanagaraj, E. Lubloy, M.Z. Naser, Nanomaterials in geopolymer composites: a review. Develop. Built Environ. (2022). https://doi.org/10.1016/j.dibe.2022.100114

    Article  Google Scholar 

  79. Q. Fu, W. Xu, X. Zhao, M. Bu, Q. Yuan, D. Niu, The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram. Int. 47(21), 29550–29566 (2021). https://doi.org/10.1016/j.ceramint.2021.07.190

    Article  CAS  Google Scholar 

  80. H.M. Khater, Effect of nano-silica on microstructure formation of low-cost geopolymer binder. Nanocomposites 2(2), 84–97 (2016). https://doi.org/10.1080/20550324.2016.1203515

    Article  CAS  Google Scholar 

  81. P.S. Deb, P.K. Sarker, S. Barbhuiya, Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr. Build. Mater. 101, 675–683 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.044

    Article  Google Scholar 

  82. M. Ibrahim, M.A.M. Johari, M. Maslehuddin, M.K. Rahman, Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr. Build. Mater. 173, 573–585 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.051

    Article  CAS  Google Scholar 

  83. K. Gao, K.L. Lin, D. Wang, C.L. Hwang, B.L.A. Tuan, H.S. Shiu, T.W. Cheng, Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Constr. Build. Mater. 48, 441–447 (2013). https://doi.org/10.1016/j.conbuildmat.2013.07.027

    Article  Google Scholar 

  84. K. Gao, K.L. Lin, D. Wang, H.S. Shiu, C.L. Hwang, B.L.A. Tuan, T.W. Cheng, Thin-film-transistor liquid-crystal display waste glass and nano-SiO2 as substitute sources for metakaolin-based geopolymer. Environ. Prog. Sustain. Energy 33(3), 947–955 (2014). https://doi.org/10.1002/ep.11868

    Article  CAS  Google Scholar 

  85. Q. Li, H. Xu, F. Li, P. Li, L. Shen, J. Zhai, Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel 97, 366–372 (2012). https://doi.org/10.1016/j.fuel.2012.02.059

    Article  CAS  Google Scholar 

  86. H. Assaedi, F.U.A. Shaikh, I.M. Low, Characterizations of flax fabric reinforced nanoclay-geopolymer composites. Compos. B Eng. 95, 412–422 (2016). https://doi.org/10.1016/j.compositesb.2016.04.007

    Article  CAS  Google Scholar 

  87. H. Assaedi, F.U.A. Shaikh, I.M. Low, Effect of nano-clay on mechanical and thermal properties of geopolymer. J. Asian Ceram. Soc. 4(1), 19–28 (2016). https://doi.org/10.1016/j.jascer.2015.10.004

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed Salih, Hemn: Conceptualization, Methodology, Modeling Azad: Data curation, Writing- Original draft preparation. Hemn: Visualization, Investigation. Ahmed and Hemn: Supervision.: Ahmed: Validation.: Hemn: Writing- Reviewing and Editing,

Corresponding author

Correspondence to Hemn Unis Ahmed.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Research involving human and animal participants

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.U., Mohammed, A.A. & Mohammed, A.S. Effectiveness of Silicon Dioxide Nanoparticles (Nano SiO2) on the Internal Structures, Electrical Conductivity, and Elevated Temperature Behaviors of Geopolymer Concrete Composites. J Inorg Organomet Polym 33, 3894–3914 (2023). https://doi.org/10.1007/s10904-023-02672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02672-2

Keywords

Navigation