Skip to main content
Log in

Effectiveness of nano-SiO2 on the mechanical, durability, and microstructural behavior of geopolymer concrete at different curing ages

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The invention and development of new binding construction materials to replace conventional Portland cement are now essential from the perspective of environmental concerns. Geopolymers are a potential solution to this problem. Geopolymers are innovative cementitious materials with the potential to replace Portland cement in manufacturing concrete composites. Nanomaterials offer novel features and performances to geopolymer composites by enhancing the composite's microstructural characteristics by forming extra calcium-silicate-hydrate (C–S–H), sodium-alumino-silicate-hydrate (N–A–S–H), and calcium-alumino-silicate-hydrate (C–A–S–H) gels, as well as the filling nano-pores in the matrix. In this study, extensive experimental laboratory works have been conducted on around 250 geopolymer concrete (GPC) specimens to investigate the effects of adding different dosages (1, 2, 3, and 4%) of nano-silica (NS) on the fresh, compressive strength, splitting tensile strength, flexural strength, stress–strain behaviors, modulus of elasticity, water absorption, rapid chloride permeability, resistance to an acidic environment, and microstructural properties like scanning electron microscopy (SEM) and X-ray diffraction (XRD) of geopolymer concrete composites. As a result of the addition of NS, it was found that the largest improvement in compressive strength was occurred at 3% NS, which was 6.3, 13.4, 20.5, 21, and 21.9% at 3, 7, 28, 90, and 180 days, respectively, compared to the control GPC mixture. Also, the maximum improvement in water absorption was nearly similar for 2 and 3% of NS content, which was 32.2 and 38% at 28 and 90 days, respectively, compared to the control GPC mixture. Furthermore, according to SEM observations, the addition of NS improved the microstructural characteristics of the GPC specimens due to the formation of additional geopolymerization products, as revealed by XRD analyses. However, the fresh characteristics of the geopolymer concrete mixtures are reduced due to the addition of NS to the GPC mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Habert G, Miller SA, John VM, Provis JL, Favier A, Horvath A, Scrivener KL. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat Rev Earth Environ. 2020;1(11):559–73. https://doi.org/10.1038/s43017-020-0093-3.

    Article  ADS  Google Scholar 

  2. Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34(9):1489–98. https://doi.org/10.1016/j.cemconres.2004.01.021.

    Article  CAS  Google Scholar 

  3. Guo X, Shi H, Dick WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concr Compos. 2010;32(2):142–7. https://doi.org/10.1016/j.cemconcomp.2009.11.003.

    Article  CAS  Google Scholar 

  4. Ahmed HU, Mohammed AS, Faraj RH, Qaidi SM, Mohammed AA. Compressive strength of geopolymer concrete modified with nano-silica: experimental and modeling investigations. Case Stud Constr Mater. 2022. https://doi.org/10.1016/j.cscm.2022.e01036.

    Article  Google Scholar 

  5. Abdel-Gawwad HA, Abo-El-Enein SA. A novel method to produce dry geopolymer cement powder. HBRC J. 2016;12(1):13–24.

    Article  Google Scholar 

  6. Weil M, Dombrowski K, Buchwald A. Life-cycle analysis of geopolymers. In: Weil M, editor. Geopolymers. Sawston: Woodhead Publishing; 2009. p. 194–210.

    Chapter  Google Scholar 

  7. Davidovits J. Polymers and geopolymers. Geopolymer chemistry and applications. 4th ed. Saint Quenti: Institut Géopolymère; 2015.

    Google Scholar 

  8. Ahmed HU, Mohammed AA, Rafiq S, Mohammed AS, Mosavi A, Sor NH, Qaidi S. Compressive strength of sustainable geopolymer concrete composites: a state-of-the-art review. Sustainability. 2021;13(24):13502. https://doi.org/10.3390/su132413502.

    Article  CAS  Google Scholar 

  9. Mohammed AA, Ahmed HU, Mosavi A. Survey of mechanical properties of geopolymer concrete: a comprehensive review and data analysis. Materials. 2021;14(16):4690. https://doi.org/10.3390/ma14164690.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hassan A, Arif M, Shariq M. Effect of curing condition on the mechanical properties of fly ash-based geopolymer concrete. SN Appl Sci. 2019;1(12):1–9. https://doi.org/10.1007/s42452-019-1774-8.

    Article  CAS  Google Scholar 

  11. Ahmed HU, Mohammed AA, Mohammad AS. The role of nanomaterials in geopolymer concrete composites: a state-of-the-art review. J Build Eng. 2022. https://doi.org/10.1016/j.jobe.2022.104062.

    Article  Google Scholar 

  12. Sharif HH. Fresh and mechanical characteristics of eco-efficient geopolymer concrete incorporating nano-silica: an overview. Kurdistan J Appl Res. 2021. https://doi.org/10.24017/science.2021.2.6.

    Article  Google Scholar 

  13. Lazaro A, Yu QL, Brouwers HJ. Nanotechnologies for sustainable construction. In: Khatib JM, editor. Sustainability of construction materials. Sawston: Woodhead Publishing; 2016. p. 55–78.

    Chapter  Google Scholar 

  14. Faraj RH, Ahmed HU, Rafiq S, Sor NH, Ibrahim DF, Qaidi SM. Performance of self-compacting mortars modified with nanoparticles: a systematic review and modeling. Clean Mater. 2022. https://doi.org/10.1016/j.clema.2022.100086.

    Article  Google Scholar 

  15. Assaedi H, Shaikh FUA, Low IM. Influence of mixing methods of nano silica on the microstructural and mechanical properties of flax fabric reinforced geopolymer composites. Constr Build Mater. 2016;123:541–52. https://doi.org/10.1016/j.conbuildmat.2016.07.049.

    Article  CAS  Google Scholar 

  16. Jindal BB, Sharma R. The effect of nanomaterials on properties of geopolymers derived from industrial by-products: a state-of-the-art review. Constr Build Mater. 2020;252: 119028.

    Article  CAS  Google Scholar 

  17. Behfarnia K, Rostami M. Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete. Constr Build Mater. 2017;131:205–13. https://doi.org/10.1016/j.conbuildmat.2016.11.070.

    Article  CAS  Google Scholar 

  18. Mustakim SM, Das SK, Mishra J, Aftab A, Alomayri TS, Assaedi HS, Kaze CR. Improvement in fresh, mechanical and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. SILICON. 2021;13(8):2415–28. https://doi.org/10.1007/s12633-020-00593-0.

    Article  CAS  Google Scholar 

  19. Çevik A, Alzeebaree R, Humur G, Niş A, Gülşan ME. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceram Int. 2018;44(11):12253–64. https://doi.org/10.1016/j.ceramint.2018.04.009.

    Article  CAS  Google Scholar 

  20. Ibrahim M, Johari MAM, Maslehuddin M, Rahman MK. Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr Build Mater. 2018;173:573–85. https://doi.org/10.1016/j.conbuildmat.2018.04.051.

    Article  CAS  Google Scholar 

  21. Kotop MA, El-Feky MS, Alharbi YR, Abadel AA, Binyahya AS. Engineering properties of geopolymer concrete incorporating hybrid nano-materials. Ain Shams Eng J. 2021;12(4):3641–7. https://doi.org/10.1016/j.asej.2021.04.022.

    Article  Google Scholar 

  22. Nuaklong P, Sata V, Wongsa A, Srinavin K, Chindaprasirt P. Recycled aggregate high calcium fly ash geopolymer concrete with inclusion of OPC and nano-SiO2. Constr Build Mater. 2018;174:244–52. https://doi.org/10.1016/j.conbuildmat.2018.04.123.

    Article  CAS  Google Scholar 

  23. Saini G, Vattipalli U. Assessing properties of alkali activated GGBS based self-compacting geopolymer concrete using nano-silica. Case Stud Constr Mater. 2020;12: e00352. https://doi.org/10.1016/j.cscm.2020.e00352.

    Article  Google Scholar 

  24. Shahrajabian F, Behfarnia K. The effects of nano particles on freeze and thaw resistance of alkali-activated slag concrete. Constr Build Mater. 2018;176:172–8. https://doi.org/10.1016/j.conbuildmat.2018.05.033.

    Article  CAS  Google Scholar 

  25. Alzeebaree R. Bond strength and fracture toughness of alkali activated self-compacting concrete incorporating metakaolin or nanosilica. Sustainability. 2022;14(11):6798. https://doi.org/10.3390/su14116798.

    Article  CAS  Google Scholar 

  26. Mohammedameen A. Performance of alkali-activated self-compacting concrete with incorporation of nanosilica and metakaolin. Sustainability. 2022;14(11):6572. https://doi.org/10.3390/su14116572.

    Article  CAS  Google Scholar 

  27. Ahmed HU, Mohammed AS, Qaidi SMA, Faraj RH, Sor NH, Mohammed AA. Compressive strength of geopolymer concrete composites: a systematic comprehensive review, analysis and modeling. Eur J Environ Civ Eng. 2022. https://doi.org/10.1080/19648189.2022.2083022.

    Article  Google Scholar 

  28. Reddy MS, Dinakar P, Rao BH. Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. J Build Eng. 2018;20:712–22.

    Article  Google Scholar 

  29. Li N, Shi C, Zhang Z, Wang H, Liu Y. A review on mixture design methods for geopolymer concrete. Compos B Eng. 2019;178: 107490.

    Article  CAS  Google Scholar 

  30. Nuaklong P, Jongvivatsakul P, Pothisiri T, Sata V, Chindaprasirt P. Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Produc. 2020;252:119797. https://doi.org/10.1016/j.jclepro.2019.119797.

    Article  CAS  Google Scholar 

  31. Deb PS, Sarker PK, Barbhuiya S. Sorptivity and acid resistance of ambient-cured geopolymer mortars containing nano-silica. Cement Concr Compos. 2016;72:235–45. https://doi.org/10.1016/j.cemconcomp.2016.06.017.

    Article  CAS  Google Scholar 

  32. Ramezanianpour AA, Moeini MA. Mechanical and durability properties of alkali activated slag coating mortars containing nanosilica and silica fume. Constr Build Mater. 2018;163:611–21. https://doi.org/10.1016/j.conbuildmat.2017.12.062.

    Article  CAS  Google Scholar 

  33. Durak U, Karahan O, Uzal B, İlkentapar S, Atiş CD. Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct Concr. 2021;22:E352–67. https://doi.org/10.1002/suco.201900479.

    Article  Google Scholar 

  34. Adak D, Sarkar M, Mandal S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr Build Mater. 2014;70:453–9. https://doi.org/10.1016/j.conbuildmat.2014.07.093.

    Article  Google Scholar 

  35. Luo Z, Li W, Li P, Wang K, Shah SP. Investigation on effect of nanosilica dispersion on the properties and microstructures of fly ash-based geopolymer composite. Constr Build Mater. 2021;282:122690. https://doi.org/10.1016/j.conbuildmat.2021.122690.

    Article  CAS  Google Scholar 

  36. Adak D, Sarkar M, Mandal S. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr Build Mater. 2017;135:430–9. https://doi.org/10.1016/j.conbuildmat.2016.12.111.

    Article  CAS  Google Scholar 

  37. Phoo-ngernkham T, Chindaprasirt P, Sata V, Hanjitsuwan S, Hatanaka S. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater Des. 2014;55:58–65. https://doi.org/10.1016/j.matdes.2013.09.049.

    Article  CAS  Google Scholar 

  38. Their JM, Özakça M. Developing geopolymer concrete by using cold-bonded fly ash aggregate, nano-silica, and steel fiber. Constr Build Mater. 2018;180:12–22. https://doi.org/10.1016/j.conbuildmat.2018.05.274.

    Article  CAS  Google Scholar 

  39. Sun K, Peng X, Wang S, Zeng L, Ran P, Ji G. Effect of nano-SiO2 on the efflorescence of an alkali-activated metakaolin mortar. Constr Build Mater. 2020;253:118952. https://doi.org/10.1016/j.conbuildmat.2020.118952.

    Article  CAS  Google Scholar 

  40. Etemadi M, Pouraghajan M, Gharavi H. Investigating the effect of rubber powder and nano silica on the durability and strength characteristics of geopolymeric concretes. J Civ Eng Mater Appl. 2020;4(4):243–52. https://doi.org/10.22034/jcema.2020.119979.

    Article  Google Scholar 

  41. Naskar S, Chakraborty AK. Effect of nano materials in geopolymer concrete. Perspect Sci. 2016;8:273–5. https://doi.org/10.1016/j.pisc.2016.04.049.

    Article  Google Scholar 

  42. Singh B, Ishwarya G, Gupta M, Bhattacharyya SK. Geopolymer concrete: a review of some recent developments. Constr Build Mater. 2015;85:78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036.

    Article  Google Scholar 

  43. Zhang P, Gao Z, Wang J, Guo J, Hu S, Ling Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: a review. J Clean Prod. 2020;270:122389. https://doi.org/10.1016/j.jclepro.2020.122389.

    Article  CAS  Google Scholar 

  44. Ibrahim M, Johari MAM, Rahman MK, Maslehuddin M, Mohamed HD. Enhancing the engineering properties and microstructure of room temperature cured alkali activated natural pozzolan based concrete utilizing nanosilica. Constr Build Mater. 2018;189:352–65. https://doi.org/10.1016/j.conbuildmat.2018.08.166.

    Article  CAS  Google Scholar 

  45. Yip CK, Lukey GC, Van Deventer JS. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res. 2005;35(9):1688–97. https://doi.org/10.1016/j.cemconres.2004.10.042.

    Article  CAS  Google Scholar 

  46. Hamed N, El-Feky MS, Kohail M, Nasr ESA. Effect of nano-clay de-agglomeration on mechanical properties of concrete. Constr Build Mater. 2019;205:245–56. https://doi.org/10.1016/j.conbuildmat.2019.02.018.

    Article  CAS  Google Scholar 

  47. Puligilla S, Mondal P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem Concr Res. 2013;43:70–80. https://doi.org/10.1016/j.cemconres.2012.10.004.

    Article  CAS  Google Scholar 

  48. Mahboubi B, Guo Z, Wu H. Evaluation of durability behavior of geopolymer concrete containing nano-silica and nano-clay additives in acidic media. J Civ Eng Mater Appl. 2019;3(3):163–71. https://doi.org/10.22034/JCEMA.2019.95839.

    Article  Google Scholar 

  49. Rabiaa E, Mohamed RAS, Sofi WH, Tawfik TA. Developing geopolymer concrete properties by using nanomaterials and steel fibers. Adv Mater Sci Eng. 2020. https://doi.org/10.1155/2020/5186091.

    Article  Google Scholar 

  50. Vyas S, Mohammad S, Pal S, Singh N. Strength and durability performance of fly ash based geopolymer concrete using nano silica. Int J Eng Sci Technol. 2020;4(2):1–12. https://doi.org/10.29121/ijoest.v4.i2.2020.73.

    Article  Google Scholar 

  51. Emad H, Soufi W, Elmannaey A, Abd-El-Aziz M, Hany EG. Effect of nano-silica on the mechanical properties of slag geopolymer concrete. 2018.

  52. Gao K, Lin KL, Wang D, Hwang CL, Tuan BLA, Shiu HS, Cheng TW. Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Constr Build Mater. 2013;48:441–7. https://doi.org/10.1016/j.conbuildmat.2013.07.027.

    Article  Google Scholar 

  53. Assaedi H, Alomayri T, Shaikh F, Low IM. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials. 2019;12(9):1459. https://doi.org/10.3390/ma12091459.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Samadi M, Shah KW, Huseien GF, Lim NHAS. Influence of glass silica waste nano powder on the mechanical and microstructure properties of alkali-activated mortars. Nanomaterials. 2020;10(2):324. https://doi.org/10.3390/nano10020324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dao DV, Tran HV, Ly HB, Le TT. Calibration of a stress-strain response for geopolymer concrete under axial compressive load. Proc Instit Mech Eng Part L J Mater Des Appl. 2022. https://doi.org/10.1177/14644207221075912.

    Article  Google Scholar 

  56. Farhan NA, Sheikh MN, Hadi MN. Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Constr Build Mater. 2019;196:26–42. https://doi.org/10.1016/j.conbuildmat.2018.11.083.

    Article  CAS  Google Scholar 

  57. Ghafoor MT, Khan QS, Qazi AU, Sheikh MN, Hadi MNS. Influence of alkaline activators on the mechanical properties of fly ash based geopolymer concrete cured at ambient temperature. Constr Build Mater. 2021;273:121752. https://doi.org/10.1016/j.conbuildmat.2020.121752.

    Article  CAS  Google Scholar 

  58. Thomas RJ, Peethamparan S. Alkali-activated concrete: engineering properties and stress–strain behavior. Constr Build Mater. 2015;93:49–56. https://doi.org/10.1016/j.conbuildmat.2015.04.039.

    Article  Google Scholar 

  59. Huseien GF, Hamzah HK, Sam ARM, Khalid NHA, Shah KW, Deogrescu DP, Mirza J. Alkali-activated mortars blended with glass bottle waste nano powder: Environmental benefit and sustainability. J Clean Prod. 2020;243:118636. https://doi.org/10.1016/j.jclepro.2019.118636.

    Article  CAS  Google Scholar 

  60. Zhang P, Wang K, Wang J, Guo J, Hu S, Ling Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram Int. 2020;46(12):20027–37. https://doi.org/10.1016/j.ceramint.2020.05.074.

    Article  CAS  Google Scholar 

  61. Ekinci E, Türkmen İ, Kantarci F, Karakoç MB. The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Constr Build Mater. 2019;201:257–67. https://doi.org/10.1016/j.conbuildmat.2018.12.204.

    Article  CAS  Google Scholar 

  62. AngelinLincy G, Velkennedy R. Experimental optimization of metakaolin and nanosilica composite for geopolymer concrete paver blocks. Struct Concr. 2021;22:E442–51. https://doi.org/10.1002/suco.201900555.

    Article  Google Scholar 

  63. Zidi Z, Ltifi M, Zafar I. Synthesis and attributes of nano-SiO2 local metakaolin based-geopolymer. J Build Eng. 2021;33:101586. https://doi.org/10.1016/j.jobe.2020.101586.

    Article  Google Scholar 

  64. Ariffin MAM, Bhutta MAR, Hussin MW, Tahir MM, Aziah N. Sulfuric acid resistance of blended ash geopolymer concrete. Constr Build Mater. 2013;43:80–6. https://doi.org/10.1016/j.conbuildmat.2013.01.018.

    Article  Google Scholar 

  65. Thokchom S. Fly ash geopolymer pastes in sulphuric acid. Int J Eng Innov Res. 2014;3(6):943–7.

    Google Scholar 

  66. Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res. 2003;33(10):1607–11. https://doi.org/10.1016/S0008-8846(03)00125-X.

    Article  CAS  Google Scholar 

  67. Israel D, Macphee DE, Lachowski EE. Acid attack on pore-reduced cements. J Mater Sci. 1997;32(15):4109–16. https://doi.org/10.1023/A:1018610109429.

    Article  ADS  CAS  Google Scholar 

  68. Belkowitz JS, Belkowitz WB, Moser RD, Fisher FT, Weiss CA. The influence of nano silica size and surface area on phase development, chemical shrinkage and compressive strength of cement composites. In: Sobolev K, Shah SP, editors. Nanotechnology in construction. Cham: Springer; 2015. p. 207–12. https://doi.org/10.1007/978-3-319-17088-6_26.

    Chapter  Google Scholar 

  69. Hartman RL, Fogler HS. Understanding the dissolution of zeolites. Langmuir. 2007;23(10):5477–84. https://doi.org/10.1021/la063699g.

    Article  CAS  PubMed  Google Scholar 

  70. Patel Y, Patel IN, Shah MJ. Experimental investigation on compressive strength and durability properties of geopolymer concrete incorporating with nano silica. J Impact Factor. 2015;6(5):135–43.

    Google Scholar 

  71. Bassuoni MT, Nehdi ML. Resistance of self-consolidating concrete to sulfuric acid attack with consecutive pH reduction. Cem Concr Res. 2007;37(7):1070–84. https://doi.org/10.1016/j.cemconres.2007.04.014.

    Article  CAS  Google Scholar 

  72. Zhuang XY, Chen L, Komarneni S, Zhou CH, Tong DS, Yang HM, Wang H, et al. Fly ash-based geopolymer: clean production, properties and applications. J Clean Prod. 2016;125:253–67. https://doi.org/10.1016/j.jclepro.2016.03.019.

    Article  CAS  Google Scholar 

  73. Chindaprasirt P, Rattanasak U, Taebuanhuad S. Resistance to acid and sulfate solutions of microwave-assisted high calcium fly ash geopolymer. Mater Struct. 2013;46(3):375–81. https://doi.org/10.1617/s11527-012-9907-1.

    Article  CAS  Google Scholar 

  74. Kohail M, Khalaf MA. The efficiency of chloride extraction using un-galvanized steel anode. Ain Shams Eng J. 2021;12(2):1353–60. https://doi.org/10.1016/j.asej.2020.11.001.

    Article  Google Scholar 

  75. Adak D, Sarkar M, Maiti M, Tamang A, Mandal S, Chattopadhyay B. Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology. RSC Adv. 2015;5(79):64037–45. https://doi.org/10.1039/C5RA12776A.

    Article  ADS  CAS  Google Scholar 

  76. Sastry KGK, Sahitya P, Ravitheja A. Influence of nano TiO2 on strength and durability properties of geopolymer concrete. Mater Today Proc. 2021;45:1017–25. https://doi.org/10.1016/j.matpr.2020.03.139.

    Article  CAS  Google Scholar 

  77. Raj RS, Arulraj GP, Anand N, Kanagaraj B, Lubloy E, Naser MZ. Nanomaterials in geopolymer composites: a review. Dev Built Environ. 2022. https://doi.org/10.1016/j.dibe.2022.100114.

    Article  Google Scholar 

  78. Fu Q, Xu W, Zhao X, Bu M, Yuan Q, Niu D. The microstructure and durability of fly ash-based geopolymer concrete: a review. Ceram Int. 2021;47(21):29550–66. https://doi.org/10.1016/j.ceramint.2021.07.190.

    Article  CAS  Google Scholar 

  79. Khater HM. Effect of nano-silica on microstructure formation of low-cost geopolymer binder. Nanocomposites. 2016;2(2):84–97. https://doi.org/10.1080/20550324.2016.1203515.

    Article  CAS  Google Scholar 

  80. Deb PS, Sarker PK, Barbhuiya S. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr Build Mater. 2015;101:675–83. https://doi.org/10.1016/j.conbuildmat.2015.10.044.

    Article  Google Scholar 

  81. Khater HM, Abd elGawaad HA. Characterization of alkali activated geopolymer mortar doped with MWCNT. Constr Build Mater. 2016;102:329–37. https://doi.org/10.1016/j.conbuildmat.2015.10.121.

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemn Unis Ahmed.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome.

Ethical approval

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, H.U., Mohammed, A.A. & Mohammed, A.S. Effectiveness of nano-SiO2 on the mechanical, durability, and microstructural behavior of geopolymer concrete at different curing ages. Archiv.Civ.Mech.Eng 23, 129 (2023). https://doi.org/10.1007/s43452-023-00668-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00668-w

Keywords

Navigation