Skip to main content
Log in

Modifying of Structural, Optical, Thermal, and Mechanical Properties of PCL/PMMA Biomaterial Blend Doped With MWCNTs as an Application in Materials Science

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present study is aimed to examine the structural, optical, thermal and mechanical properties of multi-walled carbon nanotubes-Polycaprolactone /Poly methyl methacrylate (MWCNTs-PCL/PMMA) nanocomposites samples by using various techniques. Nanocomposites samples (MWCNT-PCL/PMMA) were prepared by using the casting technique. The interaction of PCL/PMMA blend with MWCNTs has been assessed by using XRD and UV–Vis spectroscopy. From the XRD data, the addition of MWCNTs to the PCL/PMMA blend has been enhancing the amorphous nature of the blend. Using UV–Vis. measurements, the changes in absorbance, extinction coefficient, refractive index, and energy gap parameters were determined showing enhancement for various applications. The optical energy band gap of the MWCNT-PCL/PMMA films was decreased with the increase of the nanofiller content. The morphology shown by the SEM has guaranteed the uniform dispersion of MWCNTs in the blend. The disordered organization of MWCNTs in the blend is revealed by the glass transition temperature of the composite, which has been observed to decrease with an increase in MWCNTs content. TGA has demonstrated the nanocomposites samples superior thermal stability compared to a pure PCL/PMMA blend and its enhancement with the addition of MWCNTs. The loading of MWCNTs has shown an increasing trend in the mechanical properties of the nanocomposites samples, such as tensile strength and young’s modulus. The MWCNTs-PCL/PMMA films offer special qualities that enable them to be used in for different applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Asthana, K. Pal, A.A.A. Aljabali, M.M. Tambuwala, F.G. de Souza, K. Pandey, Polyvinyl alcohol (PVA) mixed green–clay and aloe vera based polymeric membrane optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology, J. Mol. Struct. 1229 (2021) 129592. https://doi.org/10.1016/J.MOLSTRUC.2020.129592.

  2. Y. Abhiram, A. Das, K.K. Sharma, Green composites for structural and non-structural applications: A review. Mater. Today Proc. 44, 2658–2664 (2021). https://doi.org/10.1016/J.MATPR.2020.12.678

    Article  Google Scholar 

  3. J. Rydz, W. Sikorska, M. Kyulavska, D. Christova, Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 16, 564–596 (2014). https://doi.org/10.3390/ijms16010564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Barhoum, K. Pal, H. Rahier, H. Uludag, I. S. Kim, & Bechelany, M., Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications, Appl. Mater. Today. 17 (2019) 1–35.

  5. Q.A. Alsulami, A. Rajeh, Synthesis of the SWCNTs/TiO2 nanostructure and its effect study on the thermal, optical, and conductivity properties of the CMC/PEO blend, Results Phys. 28 (2021) 104675. https://doi.org/10.1016/J.RINP.2021.104675.

  6. D. Lv, M. Zhu, Z. Jiang, S. Jiang, Q. Zhang, R. Xiong, C. Huang, Green electrospun nanofibers and their application in air filtration. Macromol. Mater. Eng. 303, 1800336 (2018). https://doi.org/10.1002/mame.201800336

    Article  CAS  Google Scholar 

  7. M.M. Abutalib, A. Rajeh, Boosting optical and electrical characteristics of polyvinyl alcohol/carboxymethyl cellulose nanocomposites by GNPs / MWCNTs fillers as an application in energy storage devices. Int. J. Energy Res. 46, 6216–6224 (2022). https://doi.org/10.1002/er.7559

    Article  CAS  Google Scholar 

  8. H.M. Alghamdi, A. Rajeh, Synthesis of CoFe2O4/MWCNTs nanohybrid and its effect on the optical, thermal, and conductivity of PVA/CMC composite as an application in electrochemical devices. J. Inorg. Organomet. Polym. Mater. 32, 1935–1949 (2022). https://doi.org/10.1007/s10904-022-02322-z

    Article  CAS  Google Scholar 

  9. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 41, 1345–1367 (2010). https://doi.org/10.1016/J.COMPOSITESA.2010.07.003

    Article  Google Scholar 

  10. K. Pal, N. Asthana, A.A. Aljabali, S.K. Bhardwaj, S. Kralj, A. Penkova, S. Thomas, T. Zaheer, F. Gomes de Souza, A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci. 47, 691–707 (2022). https://doi.org/10.1080/10408436.2021.1935717

    Article  CAS  Google Scholar 

  11. N. Mohd Nurazzi, M.R.M. Asyraf, A. Khalina, N. Abdullah, F.A. Sabaruddin, S.H. Kamarudin, S. Ahmad, A.M. Mahat, C.L. Lee, H.A. Aisyah, M.N.F. Norrrahim, R.A. Ilyas, M.M. Harussani, M.R. Ishak, S.M. Sapuan, Fabrication, Functionalization, and Application of Carbon Nanotube-Reinforced Polymer Composite: An Overview, Polymers (Basel). 13 (2021) 1047. https://doi.org/10.3390/polym13071047.

  12. H.S. Alzahrani, A.I. Al-Sulami, Q.A. Alsulami, A. Rajeh, A systematic study of structural, conductivity, linear, and nonlinear optical properties of PEO/PVA-MWCNTs/ZnO nanocomposites films for optoelectronic applications, Opt. Mater. (Amst). 133 (2022) 112900. https://doi.org/10.1016/J.OPTMAT.2022.112900.

  13. T. Shokuhfar, A. Makradi, E. Titus, G. Cabral, S. Ahzi, A.C.M. Sousa, S. Belouettar, J. Gracio, Prediction of the mechanical properties of hydroxyapatite/polymethyl methacrylate/carbon nanotubes nanocomposite. J. Nanosci. Nanotechnol. 8, 4279–4284 (2008). https://doi.org/10.1166/jnn.2008.AN26

    Article  CAS  PubMed  Google Scholar 

  14. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon Nanotubes: Present and Future Commercial Applications, Science (80-. ). 339 (2013) 535–539. https://doi.org/10.1126/science.1222453.

  15. D. Wu, L. Wu, W. Zhou, Y. Sun, M. Zhang, Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J. Polym. Sci. Part B Polym. Phys. 48, 479–489 (2010). https://doi.org/10.1002/polb.21909

    Article  CAS  Google Scholar 

  16. F.R. Lamastra, D. Puglia, M. Monti, A. Vella, L. Peponi, J.M. Kenny, F. Nanni, Poly(ε-caprolactone) reinforced with fibres of Poly(methyl methacrylate) loaded with multiwall carbon nanotubes or graphene nanoplatelets. Chem. Eng. J. 195–196, 140–148 (2012). https://doi.org/10.1016/J.CEJ.2012.04.078

    Article  Google Scholar 

  17. Y. Zhang, Y.-J. Heo, Y.-R. Son, I. In, K.-H. An, B.-J. Kim, S.-J. Park, Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon N. Y. 142, 445–460 (2019). https://doi.org/10.1016/J.CARBON.2018.10.077

    Article  CAS  Google Scholar 

  18. K. Pal, A.A. Aljabali, S. Kralj, S. Thomas, F. Gomes de Souza, Graphene-assembly liquid crystalline and nanopolymer hybridization: A review on switchable device implementations, Chemosphere. 263 (2021) 128104. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128104.

  19. J. Chen, L. Wang, X. Gui, Z. Lin, X. Ke, F. Hao, Y. Li, Y. Jiang, Y. Wu, X. Shi, L. Chen, Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon N. Y. 114, 1–7 (2017). https://doi.org/10.1016/J.CARBON.2016.11.074

    Article  CAS  Google Scholar 

  20. Chen, J., Wang, L., Gui, X., Lin, Z., Ke, X., Hao, F., ... & Chen, L.Strong anisotropy in thermoelectric properties of CNT/PANI composites. Carbon, 114, (2017) 1–7.‏, (n.d.).

  21. L. Wang, Q. Yao, S. Qu, W. Shi, L. Chen, Influence of electronic type of SWNTs on the thermoelectric properties of SWNTs/PANI composite films. Org. Electron. 39, 146–152 (2016). https://doi.org/10.1016/J.ORGEL.2016.09.008

    Article  CAS  Google Scholar 

  22. N. Bafandeh, M.M. Larijani, A. Shafiekhani, M.R. Hantehzadeh, N. Sheikh, Effects of Contents of Multiwall Carbon Nanotubes in Polyaniline Films on Optical and Electrical Properties of Polyaniline, Chinese Phys. Lett. 33 (2016) 117801. https://doi.org/10.1088/0256-307X/33/11/117801.

  23. M.E. Pekdemir, E. Öner, M. Kök, I.N. Qader, Thermal behavior and shape memory properties of PCL blends film with PVC and PMMA polymers. Iran. Polym. J. 30, 633–641 (2021). https://doi.org/10.1007/s13726-021-00919-8

    Article  CAS  Google Scholar 

  24. K. Pal, A. Si, G.S. El-Sayyad, M.A. Elkodous, R. Kumar, A.I. El-Batal, S. Kralj, S. Thomas, Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO 2 hybrid matrix: optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. 46, 385–449 (2021). https://doi.org/10.1080/10408436.2020.1805295

    Article  CAS  Google Scholar 

  25. E.M. Abdelrazek, A.M. Hezma, A. El-khodary, A.M. Elzayat, Spectroscopic studies and thermal properties of PCL/PMMA biopolymer blend. Egypt. J. Basic Appl. Sci. 3, 10–15 (2016). https://doi.org/10.1016/j.ejbas.2015.06.001

    Article  Google Scholar 

  26. Q. Jing, J.Y. Law, L.P. Tan, V.V. Silberschmidt, L. Li, Z. Dong, Preparation, characterization and properties of polycaprolactone diol-functionalized multi-walled carbon nanotube/thermoplastic polyurethane composite. Compos. Part A Appl. Sci. Manuf. 70, 8–15 (2015). https://doi.org/10.1016/j.compositesa.2014.10.028

    Article  CAS  Google Scholar 

  27. P. Dhatarwal, R.J. Sengwa, Structural, dielectric dispersion and relaxation, and optical properties of multiphase semicrystalline PEO/PMMA/ZnO nanocomposites, Compos. Interfaces 28, 827–842 (2021). https://doi.org/10.1080/09276440.2020.1813474

    Article  CAS  Google Scholar 

  28. R.J. Sengwa, S. Choudhary, P. Dhatarwal, Investigation of alumina nanofiller impact on the structural and dielectric properties of PEO/PMMA blend matrix-based polymer nanocomposites. Adv. Compos. Hybrid Mater. 2, 162–175 (2019). https://doi.org/10.1007/s42114-019-00078-8

    Article  CAS  Google Scholar 

  29. M.A. Morsi, A. Rajeh, A.A. Al-Muntaser, Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: Nanodielectric materials for organoelectronic devices, Compos. Part B Eng. 173 (2019) 106957. https://doi.org/10.1016/J.COMPOSITESB.2019.106957.

  30. O. Pravakar, T. Siddaiah, P.V.R.K. Ramacharyulu, N.O. Gopal, C. Ramu, H. Nagabhushana, Studies on the effect of Cu doping on the structural, thermal and spectroscopic properties of PVA/MAA:EA polyblend films. Mater. Res. Innov. 25, 442–448 (2021). https://doi.org/10.1080/14328917.2020.1831152

    Article  CAS  Google Scholar 

  31. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Conductivity and thermal studies of blend polymer electrolytes based on PVAc–PMMA. Solid State Ionics 177, 2679–2682 (2006). https://doi.org/10.1016/J.SSI.2006.04.013

    Article  CAS  Google Scholar 

  32. A.M. Hezma, I.S. Elashmawi, A. Rajeh, M. Kamal, Change Spectroscopic, thermal and mechanical studies of PU/PVC blends. Phys. B Condens. Matter. 495, 4–10 (2016). https://doi.org/10.1016/J.PHYSB.2016.04.043

    Article  CAS  Google Scholar 

  33. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite, Phys. B Condens. Matter. 578 (2020) 411796. https://doi.org/10.1016/J.PHYSB.2019.411796.

  34. A. Tawansi, H.I. Abdel-Kader, M. El-Zalabany, E.M. Abdel-Razek, FeCl3-doped polyvinylidene fluoride. J. Mater. Sci. 29, 3451–3457 (1994). https://doi.org/10.1007/BF00352048

    Article  CAS  Google Scholar 

  35. A. Koleżyński, FP-LAPW study of anhydrous cadmium and silver oxalates: electronic structure and electron density topology. Phys. B Condens. Matter. 405, 3650–3657 (2010). https://doi.org/10.1016/J.PHYSB.2010.05.059

    Article  Google Scholar 

  36. A.M. Hezma, I.S. Elashmawi, E.M. Abdelrazek, A. Rajeh, M. Kamal, Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog. Nat. Sci. Mater. Int. 27, 338–343 (2017). https://doi.org/10.1016/J.PNSC.2017.06.001

    Article  CAS  Google Scholar 

  37. M.M. Atta, A.M.A. Henaish, A.M. Elbasiony, E.O. Taha, A.M. Dorgham, Structural, optical, and thermal properties of PEO/PVP blend reinforced biochar, Opt. Mater. (Amst). 127 (2022) 112268. https://doi.org/10.1016/J.OPTMAT.2022.112268.

  38. R. Seoudi, A.A. Shabaka, M. Kamal, E.M. Abdelrazek, W.H. Eisa, Dependence of structural, vibrational spectroscopy and optical properties on the particle sizes of CdS/polyaniline core/shell nanocomposites. J. Mol. Struct. 1013, 156–162 (2012). https://doi.org/10.1016/J.MOLSTRUC.2012.01.016

    Article  CAS  Google Scholar 

  39. L.M. Al-Harbi, Q.A. Alsulami, M.O. Farea, A. Rajeh, Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices, J. Mol. Struct. 1272 (2023) 134244. https://doi.org/10.1016/J.MOLSTRUC.2022.134244.

  40. N.Y. Elamin, A. Modwi, W. Abd El-Fattah, A. Rajeh, Synthesis and structural of Fe3O4 magnetic nanoparticles and its effect on the structural optical, and magnetic properties of novel Poly(methyl methacrylate)/ Polyaniline composite for electromagnetic and optical applications, Opt. Mater. (Amst). 135 (2023) 113323. https://doi.org/10.1016/J.OPTMAT.2022.113323.

  41. A. Muthupandeeswari, P. Kalyani, L.C. Nehru, On the effects of high loading of ZnO nanofiller on the structural, optical, impedance and dielectric features of PVA@ZnO nanocomposite films. Polym. Bull. 78, 7071–7088 (2021). https://doi.org/10.1007/s00289-020-03443-6

    Article  CAS  Google Scholar 

  42. A.F. Mansour, S.F. Mansour, M.A. Abdo, Enhancement of structural and electrical properties of ZnO/PVA nanocomposites. IOSR J. Appl. Phys 7(2), 97 (2015)

    Google Scholar 

  43. E.M. Alharbi, A. Rajeh, Tailoring the structural, optical, dielectric, and electrical properties of PEO/PVA blend using graphene nanoplates for energy storage devices. J. Mater. Sci. Mater. Electron. 33, 22196–22207 (2022). https://doi.org/10.1007/s10854-022-08999-9

    Article  CAS  Google Scholar 

  44. T.S. Soliman, M.F. Zaki, M.M. Hessien, S.I. Elkalashy, The structure and optical properties of PVA-BaTiO3 nanocomposite films, Opt. Mater. (Amst). 111 (2021) 110648. https://doi.org/10.1016/J.OPTMAT.2020.110648.

  45. A.M. El-naggar, Z.K. Heiba, M.B. Mohamed, A.M. Kamal, G. Lakshminarayana, O.H. Abd-Elkader, Effect of MnS/ZnS nanocomposite on the structural, linear and nonlinear optical properties of PVA/CMC blended polymer, Opt. Mater. (Amst). 128 (2022) 112379. https://doi.org/10.1016/J.OPTMAT.2022.112379.

  46. M.M. Abutalib, A. Rajeh, Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite, J. Organomet. Chem. 918 (2020) 121309. https://doi.org/10.1016/J.JORGANCHEM.2020.121309.

  47. B. Wetzel, F. Haupert, M. Qiu Zhang, Epoxy nanocomposites with high mechanical and tribological performance, Compos. Sci. Technol. 63 (2003) 2055–2067. https://doi.org/10.1016/S0266-3538(03)00115-5.

  48. X. Hu, X. Jia, C. Zhi, Z. Jin, M. Miao, Improving the properties of starch-based antimicrobial composite films using ZnO-chitosan nanoparticles. Carbohydr. Polym. 210, 204–209 (2019). https://doi.org/10.1016/J.CARBPOL.2019.01.043

    Article  CAS  PubMed  Google Scholar 

  49. I.S. Elashmawi, H.E. Abdel Baieth, Spectroscopic studies of hydroxyapatite in PVP/PVA polymeric matrix as biomaterial, Curr. Appl. Phys. 12 (2012) 141–146. https://doi.org/10.1016/J.CAP.2011.05.011.

  50. M.M. Abutalib, A. Rajeh, Structural, thermal, optical and conductivity studies of Co/ZnO nanoparticles doped CMC polymer for solid state battery applications, Polym. Test. 91 (2020) 106803. https://doi.org/10.1016/J.POLYMERTESTING.2020.106803.

  51. N.G. Sahoo, Y.C. Jung, H.J. Yoo, J.W. Cho, Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol. Chem. Phys. 207, 1773–1780 (2006). https://doi.org/10.1002/macp.200600266

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

EMA: Supervision, Conceptualization, Formal analysis, Methodology, Writing—original draft, Writing—review & editing. AMH: Visualization, Investigation, Software. AE-K: Visualization, Investigation, Data curation. AME: Writing—review & editing. AR: Data curation, Writing—review & editing, Visualization, Data curation.

Corresponding author

Correspondence to A. Rajeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelrazek, E.M., Hezma, A.M., El-khodary, A. et al. Modifying of Structural, Optical, Thermal, and Mechanical Properties of PCL/PMMA Biomaterial Blend Doped With MWCNTs as an Application in Materials Science. J Inorg Organomet Polym 33, 4117–4126 (2023). https://doi.org/10.1007/s10904-023-02625-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02625-9

Keywords

Navigation