Skip to main content

Advertisement

Log in

Influence of Manganese Dioxide Nanoparticles on MoS2/PANI Nanosheets and Its Energy Storage Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A novel microwave assisted method is adopted to synthesize MoS2/PANI/MnO2(M/P/M) nanocomposites using various concentration (M/P/M-1, M/P/M-2, M/P/M-3, M/P/M-4 and M/P/M-5) of manganese sulphate monohydrate for the design of supercapacitors. The homogeneity, functional groups and phase purity present in the synthesized M/P/M nanocomposites are determined by X-ray diffraction pattern (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscope (HR-TEM) Fourier Transform Infrared Spectroscopy (FT-IR), Selected Area Electron Diffraction (SAED) analysis. XRD results revealed that the crystallite size of the M/P/M nanocompositesas 19–21 nm.HR-TEM images exhibited that the synthesized MoS2/PANI/MnO2 nanocomposites are nanosheet stacked with the spherical shaped particles. The electrochemical behaviour of the M/P/M nanocomposites are studied in aqueous-based electrolytes to determine its superior performances. M/P/M -2 revealed a maximum specific capacitance of 619 F/g in 3 M KOH at 0.5 mA cm− 2 and retained 93.84% of its initial specific capacitance even after 5000 cycles. As a result, M/P/M nanocomposites represent an exciting potential for high-performance electrochemical energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Thirumalairajan, K. Girija, P. Maadeswaran, J. Chandrasekaran, Structural and optical investigation of manganese oxide thin films by spray pyrolysis technique. J. Optoelectron. Adv. Mater 2, 779–781 (2008)

    CAS  Google Scholar 

  2. X. Chen, L. Li, X. Wang, K. Xie, Y. Wang, Effect of manganese valence on specific capacitance in supercapacitors of manganese oxide microspheres. Chem A Eur J 27, 1–9 (2021)

    Google Scholar 

  3. Yu. Guihua, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11, 4438–4442 (2011)

    Article  Google Scholar 

  4. Y. He et al., MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J Solid State Electrochem 20(5), 1459–1467 (2016)

    Article  CAS  Google Scholar 

  5. S.K. Kandasamy et al., Recent advances in electrochemical performances of graphene composite (graphene-polyaniline/polypyrrole/activated carbon/carbon nanotube) electrode materials for supercapacitor: a review. J. Inorg. Organomet. Polym Mater 28, 559–584 (2018)

    Article  CAS  Google Scholar 

  6. Z. Neisi et al., Polyaniline/Cu(II) metal-organic frameworks composite for high performance supercapacitor electrode. J. Inorg. Organomet. Polym Mater 29, 1838–1847 (2019)

    Article  CAS  Google Scholar 

  7. S. Zhao, T. Liu, YuZ.Wen Zeng, T. Li, S. Hussain, Dewen Hou and Xianghe Peng, Cr-doped MnO2 nanostructure: morphology evolution and electrochemical properties. J. Mater. Sci.: Mater. Electron 27, 3265–3270 (2016)

    CAS  Google Scholar 

  8. H. Ma, Z.G. Shen, S. Ben, Understanding the exfoliation and dispersion of MoS2 nanosheets in pure water. J. Colloid Interface Sci 517, 204–212 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4, 2822–2830 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. S. Rajkumar, R. Subha, S. Gowri, A. Bella, J. Princy Merlin, Enhanced electrochemical performance of aminophenol-modified ZnO as electrode material for supercapacitors. Ionics 28, 859–869 (2022)

    Article  CAS  Google Scholar 

  11. J. Tian, Y. Xue, X. Yu, Y. Pei, H. Zhang, J. Wang, Solvothermal synthesis of NiWO4 nanostructure and its application as a cathode material for asymmetric supercapacitors. RSC Adv. 8, 41740–41748 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Anjelin Ursula, Portia, et.al., Facile synthesis of Eu-doped CaTiO3 and their enhanced supercapacitive performance. Ionics 26, 3543–3554 (2020)

    Article  Google Scholar 

  13. S. Krithika, J. Balavijayalakshmi, Synthesis and fabrication of nanostructured MoS2/PANI nanocomposites by microwave assisted method for electrochemical applications. Mater Today Proc 50, 17–25 (2021)

    Article  Google Scholar 

  14. S.-J. Bao, B.-L. He, Y.-Y. Liang, W.-J. Zhou, H.-L. Li, Synthesis and electrochemical characterization of amorphous MnO2 for electrochemical capacitor. Mater. Sci. Eng., A 397, 305–309 (2005)

    Article  Google Scholar 

  15. M. Mylarappa, V. Venkata Lakshmi, K.R. Vishnu Mahesh, H.P. Nagaswarupa, N. Raghavendra, A facile hydrothermal recovery of nano sealed MnO2 particle from waste batteries: an advanced material for electrochemical and environmental applications. IOP Conf. Ser. Mater. Sci. Eng 149, 012178 (2016)

    Article  Google Scholar 

  16. S. Rajkumar, et.al., Investigation on NiWO4/PANI composite as an electrode material for energy storage devices. New. J. Chem. 45, 20612 (2021)

    Article  CAS  Google Scholar 

  17. Z. Honghao, J. Wei, Q. Guo, L. Xie, Z. Yang, J. He, W. Qi, Z. Cao, X. Zhao, P. Pan, H. Li, K. Zhang, J. Zhao, X. Li, P. Zhang, K.W. Shah, Facile and scalable fabrication of MnO2nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application. J. Power Sources 450, 227616 (2020)

    Article  Google Scholar 

  18. M. Sarika, R.S. Jadhav, N. Kalubarme, C. Suzuki, J. Terashima, B.B. Mun Kale, S.W. Gosavi, A. Fujishima, Cobalt-doped manganese dioxide hierarchical nanostructures for enhancing pseudocapacitive properties. ACS Omega 6, 5717–5729 (2021)

    Article  Google Scholar 

  19. R. Thangarasu, V.D. Victor, M. Alagumuthu, MnO2/PANI/rGO–a modified carbon electrode based electrochemical sensor to detect organophosphate pesticide in real food samples. Anal Bioanaly Electrochem 11, 427–447 (2019)

    CAS  Google Scholar 

  20. M. Zahan, J. Podder, Role of Fe doping on structural and electrical properties of MnO2 nanostructured thin films for glucose sensing performance. Mater. Sci. Semiconduct. Process 117, 105109 (2020)

    Article  CAS  Google Scholar 

  21. S. Rajkumar, et.al., Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor. Ionics 26, 5757–5772 (2020)

    Article  Google Scholar 

  22. N. Kaveri, J. Balavijayalakshmi, Impact of molybdenum on structural and morphological properties of manganese ferrite nanoparticles by hydrothermal method. Mater Today Proc 33, 2390–2395 (2020)

    Article  CAS  Google Scholar 

  23. T. Yu, Y. Sun, C. Zhe, W. Wang, P. Rao, Synthesis of CuOx/MnO2 heterostructures with enhanced visible light-driven photocatalytic activity. J Mater Sci Chem Eng 5, 12–25 (2017)

    CAS  Google Scholar 

  24. X. Liao, Y. Zhao, J. Wang, W. Yang, L. Xu, X. Tian, Y. Shuang, K.A. Owusu, M. Yan, L. Mai, MoS2/MnO2heterostructured nanodevices for electrochemical energy storage. Nano Res 11, 1–10 (2017)

    CAS  Google Scholar 

  25. M. HadiHeydari, M. Abdouss, S. Mazinani, A. Bazargan, F. Fatemi, Electrochemical study of ternary polyaniline/MoS2 –MnO2 for supercapacitor applications. J. Energy Storage 40, 102738 (2021)

    Article  Google Scholar 

  26. S. Ramesh, K. Karuppasamy, S. Msolli, H.S. Kim, J.H. Kim, A nanocrystalline structured NiO/MnO2@nitrogendoped graphene oxide hybrid nanocomposite for high performance supercapacitors. New J. Chem 41, 15517–15527 (2017)

    Article  CAS  Google Scholar 

  27. W. Mahmudi, P. Nurlilasari, S. Affandi, H. Setiawan, Electrolysis synthesis of MnO2 in acidic environment and its electrochemical performance for supercapacitor. J Phys Conf Ser 1093, 29–30 (2018)

    Article  Google Scholar 

  28. A. Robert Xavier, et.al., Synthesis and characterization of Sr-doped CdO nanoplatelets for supercapacitor applications. J. Mater. Sci: Mater. Electron. 33, 8426–8434 (2022)

    Google Scholar 

  29. Song Han, et.al., ZnWO4 nanoflakes decorated NiCo2O4 nanoneedle arrays grown on carbon cloth as supercapacitor electrodes. Mater. Lett. 193, 89–92 (2017)

    Article  Google Scholar 

  30. J. PrincyMerlin. et.al., Single step auto-igniting combustion technique grown CeO2 and Ni-doped CeO2 nanostructures for multifunctional applications. J. Alloys Compd 882, 15 (2021) 160409

    Google Scholar 

  31. Q. Gong et al., Shape-controlled synthesis of Ni-CeO2@PANI nanocomposites and their synergetic effects on supercapacitors. Chem. Eng. J 344, 290–298 (2018)

    Article  CAS  Google Scholar 

  32. J. Zhang, J. Sun, Y. Hu, D. Wang, Y. Cui, Electrochemical capacitive properties of all-solid-state supercapacitors based on ternary MoS2/CNTs-MnO2 hybrids and ionic mixture electrolyte. J. Alloys Compd 780, 276–283 (2018)

    Article  Google Scholar 

  33. J. Chao, L.C. Yang, J.W. Liu, R.Z. Hu, M. Zhu, Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim. Acta 270, 387–394 (2018)

    Article  CAS  Google Scholar 

  34. S. Wu et al., Synthesis of MnO2/NiCo-layered double hydroxide hybrid as electrode materials for supercapacitor. J. Inorg. Organomet. Polym Mater 30, 3179–3187 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We hereby acknowledge DST- FIST for providing equipment support to carry out this research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SK wrote the main manuscript text and all authors reviewed the manuscript.

Corresponding author

Correspondence to J. Balavijayalakshmi.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithika, S., Balavijayalakshmi, J. Influence of Manganese Dioxide Nanoparticles on MoS2/PANI Nanosheets and Its Energy Storage Applications. J Inorg Organomet Polym 33, 1657–1666 (2023). https://doi.org/10.1007/s10904-023-02609-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02609-9

Keywords

Navigation