Skip to main content
Log in

Enhanced electrochemical performance of aminophenol-modified ZnO as electrode material for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In the present work, a one-step synthetic method was implemented in an effective way to synthezise aminophenol-modified zinc oxide (Ap-modified ZnO). The as-prepared sample was characterized by various spectral and analytical tools. The electrochemical performance of Ap-modified ZnO demonstrated that the electrode material can be used in supercapacitors. The pronounced capacitive behaviour of Ap-modified ZnO was proved by cyclic voltammetric studies (CV), galvanostatic charge–discharge test (GCD) and electrochemical impedance spectroscopy (EIS) techniques in 1 M H2SO4. The newly developed Ap-modified ZnO electrode displayed an excellent gravimetric capacitance (Cg) of 427 Fg−1 at current density of 1 mA cm−2, which may be attributed to its unique structure, existence of abundant pores and large electroactive sites, supportive for facile electron, ion transport and enhanced electrical conductivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Srinivasan R, Elaiyappillai E, Nixon EJ, Lydia IS, Johnson PM (2020) Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorganica Chimica Acta 502:119393

    Article  CAS  Google Scholar 

  2. Deng Y, Xie Y, Zou K, Ji X (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173

    Article  CAS  Google Scholar 

  3. Rajkumar S, Elanthamilan E, Merlin JP (2020) Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J Alloys Comd 861:157939

  4. Srinivasan R, Elaiyappillai E, Gowri S, Bella A, Sathiyan A, Meenatchi B, Merlin JP (2019) Electrochemical performance of l-tryptophanium picrate as an efficient electrode material for supercapacitor application. Phys Chem Chem Phys 21:11829–11838

    Article  CAS  PubMed  Google Scholar 

  5. Rajkumar S, Elanthamilan E, Merlin JP, Priscillal IJD, Lydia IS (2020) Fabrication of a CuCo 2 O 4/PANI nanocomposite as an advanced electrode for high performance supercapacitors, Sustainable. Energy Fuels 4:5313–5326

    CAS  Google Scholar 

  6. Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5:12653–12672

    Article  CAS  Google Scholar 

  7. Saleem AM, Boschin A, Lim D-H, Desmaris V, Johansson P, Enoksson P (2017) Coin-cell supercapacitors based on CVD grown and vertically aligned carbon nanofibers (VACNFs). Int J Electrochem Sci 12:6653–6661

    Article  CAS  Google Scholar 

  8. Chen H, Sun F, Wang J, Li W, Qiao W, Ling L, Long D (2013) Nitrogen doping effects on the physical and chemical properties of mesoporous carbons. J Phys Chem C 117:8318–8328

    Article  CAS  Google Scholar 

  9. Sasirekha C, Arumugam S, Muralidharan G (2018) Green synthesis of ZnO/carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl Surf Sci 449:521–527

    Article  CAS  Google Scholar 

  10. Yu H, Wu Z, Dong Y, Huang C, Shi S, Zhang Y (2019) ZnO nanorod arrays modified with Bi2S3 nanoparticles as cathode for efficient polymer solar cells. Organic Electronics 75:105369

    Article  CAS  Google Scholar 

  11. Agarwal S, Rai P, Gatell EN, Llobet E, Güell F, Kumar M, Awasthi K (2019) Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators, B Chem 292:24–31

    Article  CAS  Google Scholar 

  12. Kim J, Mousa HM, Park CH, Kim CS (2017) Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electrospinning. Appl Surf Sci 396:249–258

    Article  CAS  Google Scholar 

  13. Liu J, Wang Y, Ma J, Peng Y, Wang A (2019) A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloy Compd 783:898–918

    Article  CAS  Google Scholar 

  14. Wang J, Chen R, Xiang L, Komarneni S (2018) Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram Int 44:7357–7377

    Article  CAS  Google Scholar 

  15. Angelin MD, Rajkumar S, Merlin JP, Xavier AR, Franklin, Ravichandran A (2020) Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor. Ionics 26:5757–5772

  16. Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G (2010) Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B 405:2286–2289

    Article  CAS  Google Scholar 

  17. Jayalakshmi M, Palaniappa M, Balasubramanian K (2008) Single step solution combustion synthesis of ZnO/carbon composite and its electrochemical characterization for supercapacitor application. Int J Electrochem Sci 3:96–103

    CAS  Google Scholar 

  18. Wu J, Wang ZM, Holmes K, Marega E Jr, Zhou Z, Li H, Mazur YI, Salamo GJ (2012) Laterally aligned quantum rings: from one-dimensional chains to two-dimensional arrays. Appl Phys Lett 100:203117

    Article  Google Scholar 

  19. Guo G, Huang L, Chang Q, Ji L, Liu Y, Xie Y, Shi W, Jia N (2011) Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor. Appl Phys Lett 99:083111

    Article  Google Scholar 

  20. Choudhury A, Dey B, Mahapatra SS, Kim D-W, Yang K-S, Yang D-J (2018) Flexible and freestanding supercapacitor based on nanostructured poly (m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities. Nanotechnology 29:165401

    Article  PubMed  Google Scholar 

  21. Zhang ZJ, Sun SS (2016) Understanding the redox effects of amine and hydroxyl groups of p-aminophenol upon the capacitive performance in KOH and H2SO4 electrolyte. J Electroanal Chem 778:80–86

    Article  CAS  Google Scholar 

  22. Zhou T, Qin Y, Xu J, Tao Y, Lu M, Kong Y (2015) Zinc ions doped poly (aniline-co-m-aminophenol) for high-performance supercapacitor. Synth Met 199:169–173

    Article  CAS  Google Scholar 

  23. Yadav MS, Singh N, Kumar A (2018) Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode application. J Mater Sci: Mater Electron 29:6853–6869

    CAS  Google Scholar 

  24. Devi PG, Velu AS (2016) Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J Theor Appl Phys 10:233–240

    Article  Google Scholar 

  25. Sirisinudomkit P, Senokos E, Rubio N, Shaffer MS (2021) Reductive processing of single walled carbon nanotubes for high volumetric performance supercapacitors. Mater Adv 2:1981–1992

    Article  CAS  Google Scholar 

  26. Zhang X, Liu X, Yan R, Yang J, Liu Y, Dong S (2020) Ion-assisted self-assembly of macroporous MXene films as supercapacitor electrodes. J Mater Chem C 8:2008–2013

    Article  CAS  Google Scholar 

  27. Vijayakumar S, Lee S-H, Ryu K-S (2015) Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochim Acta 182:979–986

    Article  CAS  Google Scholar 

  28. Zhu B, Tang S, Vongehr S, Xie H, Zhu J, Meng X (2016) FeCo 2 O 4 submicron-tube arrays grown on Ni foam as high rate-capability and cycling-stability electrodes allowing superior energy and power densities with symmetric supercapacitors. Chem Commun 52:2624–2627

    Article  CAS  Google Scholar 

  29. Zhu F, Liu Y, Yan M, Shi W (2018) Construction of hierarchical FeCo2O4@ MnO2 core-shell nanostructures on carbon fibers for high-performance asymmetric supercapacitor. J Colloid Interface Sci 512:419–427

    Article  CAS  PubMed  Google Scholar 

  30. Zhu B, Tang S, Vongehr S, Xie H, Meng X (2016) Hierarchically MnO2–nanosheet covered submicrometer-FeCo2O4-tube forest as binder-free electrodes for high energy density all-solid-state supercapacitors. ACS Appl Mater Interfaces 8:4762–4770

    Article  CAS  PubMed  Google Scholar 

  31. Gao H, Xiang J, Cao Y (2017) Controlled synthesis of MnO2 nanosheets vertically covered FeCo2O4 nanoflakes as a binder-free electrode for a high-power and durable asymmetric supercapacitor. Nanotechnology 28:235401

    Article  PubMed  Google Scholar 

  32. Slimane AB, Al-Hossainy AF, Zoromba MS (2018) Synthesis and optoelectronic properties of conductive nanostructured poly (aniline-co-o-aminophenol) thin film. J Mater Sci: Mater Electron 29:8431–8445

    CAS  Google Scholar 

  33. Zoromba MS, Abdel-Aziz M, Bassyouni M, Attar A, Al-Hossainy A (2021) Synthesis and characterization of poly (ortho-aminophenol-co-para-toluidine) and its application as semiconductor thin film. J Mol Struct 1225:129131

    Article  CAS  Google Scholar 

  34. Al-Hossainy A, Zoromba MS, Abdel-Aziz M, Bassyouni M, Attar A, Zwawi M, Abd-Elmageed A, Maddah H, Slimane AB (2019) Fabrication of heterojunction diode using doped-poly (ortho-aminophenol) for solar cells applications. Physica B 566:6–16

    Article  CAS  Google Scholar 

  35. Dong X, Cao Y, Wang J, Chan-Park MB, Wang L, Huang W, Chen P (2012) Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv 2:4364–4369

    Article  CAS  Google Scholar 

  36. Chen Y-L, Hu Z-A, Chang Y-Q, Wang H-W, Zhang Z-Y, Yang Y-Y, Wu H-Y (2011) Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J Phys Chem C 115:2563–2571

    Article  CAS  Google Scholar 

  37. Reddy BS, Reddy SV, Reddy NK (2013) Physical and magnetic properties of (Co, Ag) doped ZnO nanoparticles. J Mater Sci: Mater Electron 24:5204–5210

    Google Scholar 

  38. Zhang J, Gao D, Yang G, Zhang J, Shi Z, Zhang Z, Zhu Z, Xue D (2011) Synthesis and magnetic properties of Zr doped ZnO nanoparticles. Nanoscale Res Lett 6:1–7

    Article  Google Scholar 

  39. Srinivasan R, Elaiyappillai E, Anandaraj S, kumarDuvaragan B, Johnson PM (2020) Study on the electrochemical behavior of BiVO4/PANI composite as a high performance supercapacitor material with excellent cyclic stability. J Electroanal Chem 861:113972

    Article  CAS  Google Scholar 

  40. Zhu D, Shao Y (2018) NiO/ZnO nanocomposite as electrode material for supercapacitors. Int J Electrochem Sci 13:3601–3612

    Article  CAS  Google Scholar 

  41. Theerthagiri J, Durai G, Tatarchuk T, Sumathi M, Kuppusami P, Qin J, Choi MY (2020) Synthesis of hierarchical structured rare earth metal–doped Co 3 O 4 by polymer combustion method for high performance electrochemical supercapacitor electrode materials. Ionics 26:2051–2061

    Article  CAS  Google Scholar 

  42. Liu F, Su H, Jin L, Zhang H, Chu X, Yang W (2017) Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors. J Colloid Interface Sci 505:796–804

    Article  CAS  PubMed  Google Scholar 

  43. Sivakumar P, Jana M, Kota M, Jung MG, Gedanken A, Park HS (2018) Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J Power Sources 402:147–156

    Article  CAS  Google Scholar 

  44. Li S-S, Su Y-K (2019) Improvement of the performance in Cr-doped ZnO memory devices via control of oxygen defects. RSC Adv 9:2941–2947

    Article  CAS  Google Scholar 

  45. Hussain SK, Yu JS (2019) Cobalt-doped zinc manganese oxide porous nanocubes with controlled morphology as positive electrode for hybrid supercapacitors. Chem Eng J 361:1030–1042

    Article  Google Scholar 

  46. Ahmed A-O, Samer BS, Jadhav VV, Nakate UT, Mane RS, Naushad M (2017) NiO@ CuO@ Cu bilayered electrode: two-step electrochemical synthesis supercapacitor properties. J Solid State Electrochem 21:2609–2614

    Article  Google Scholar 

  47. Guetteche Y, Bordjiba T, Bouguerne B, Nabeti Z, Mahmoudi O, Lemzademi A (2017) Development of composite material based on porous microfibrous carbon and zinc oxide for energy storage application. Int J Electrochem Sci 12:1874–1884

    Article  CAS  Google Scholar 

  48. Kumar R, Agrawal A, Nagarale RK, Sharma A (2016) High performance supercapacitors from novel metal-doped ceria-decorated aminated graphene. J Phys Chem C 120:3107–3116

    Article  CAS  Google Scholar 

  49. Heli H, Yadegari H (2014) Poly (ortho-aminophenol)/graphene nanocomposite as an efficient supercapacitor electrode. J Electroanal Chem 713:103–111

    Article  CAS  Google Scholar 

  50. Jang G-S, Ameen S, Akhtar MS, Shin H-S (2018) Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram Int 44:588–595

    Article  CAS  Google Scholar 

  51. Justin P, Meher SK, Rao GR (2010) Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C 114:5203–5210

    Article  CAS  Google Scholar 

  52. Chen C, Fan W, Zhang Q, Ma T, Wang Z (2015) High performance of supercapacitor based on nitrogen-doped graphene/p-aminophenol electrodes. Ionics 21:2639–2645

    Article  CAS  Google Scholar 

  53. Syedvali P, Rajeshkhanna G, Umeshbabu E, Kiran GU, Rao GR, Justin P (2015) In situ fabrication of graphene decorated microstructured globe artichokes of partial molar nickel cobaltite anchored on a Ni foam as a high-performance supercapacitor electrode. RSC Adv 5:38407–38416

    Article  CAS  Google Scholar 

  54. Vijayakumar S, Lee S-H, Ryu K-S (2015) Synthesis of Zn 3 V 2 O 8 nanoplatelets for lithium-ion battery and supercapacitor applications. RSC Adv 5:91822–91828

    Article  CAS  Google Scholar 

  55. Chodankar NR, Dubal DP, Kwon Y, Kim D-H (2017) Direct growth of FeCo 2 O 4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor. NPG Asia Materials 9:e419–e419

    Article  CAS  Google Scholar 

  56. Prasankumar T, Wiston BR, Gautam C, Ilangovan R, Jose SP (2018) Synthesis and enhanced electrochemical performance of PANI/Fe3O4 nanocomposite as supercapacitor electrode. J Alloy Compd 757:466–475

    Article  CAS  Google Scholar 

  57. Hu X-Y, Liu Q-X, Ma D, Liu Z, Kong Y, Xue H-G (2015) One-step synthesis of MnO2 doped poly (aniline-co-o-aminophenol) and the capacitive behaviors of the conducting copolymer. Chin Chem Lett 26:1367–1370

    Article  Google Scholar 

  58. Chee WK, Lim HN, Huang NM (2015) Electrochemical properties of free-standing polypyrrole/graphene oxide/zinc oxide flexible supercapacitor. Int J Energy Res 39:111–119

    Article  CAS  Google Scholar 

  59. Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G (2015) Hierarchical ZnO@ MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim Acta 152:172–177

    Article  CAS  Google Scholar 

  60. Reddy IN, Reddy CV, Sreedhar A, Shim J, Cho M, Yoo K, Kim D (2018) Structural, optical, and bifunctional applications: supercapacitor and photoelectrochemical water splitting of Ni-doped ZnO nanostructures. J Electroanal Chem 828:124–136

    Article  Google Scholar 

  61. Alver Ü, Tanrıverdi A (2016) Boron doped ZnO embedded into reduced graphene oxide for electrochemical supercapacitors. Appl Surf Sci 378:368–374

    Article  CAS  Google Scholar 

  62. Rajkumar S, Elanthamilan E, Merlin JP, Sathiyan A (2021) Enhanced electrochemical behaviour of FeCo2O4/PANI electrode material for supercapacitors. J Alloys Compd 874:159876

    Article  CAS  Google Scholar 

  63. Portia SAU, Srinivasan R, Elaiyappillai E, Johnson PM, Ramamoorthy K (2020) Facile synthesis of Eu-doped CaTiO 3 and their enhanced supercapacitive performance. Ionics 26:3543–3554

    Article  CAS  Google Scholar 

  64. Jiao Y, Liu Y, Yin B, Zhang S, Qu F, Wu X (2014) Hybrid α-Fe2O3@ NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10:90–98

    Article  CAS  Google Scholar 

  65. Pang H, Liu Y, Li J, Ma Y, Li G, Ai Y, Chen J, Zhang J, Zheng H (2012) Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale 5:503–507

    Article  PubMed  Google Scholar 

  66. Zhu C, He Y, Liu Y, Kazantseva N, Saha P, Cheng Q (2019) ZnO@ MOF@ PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. J Energy Chem 35:124–131

    Article  Google Scholar 

  67. Xuan W, Ramachandran R, Zhao C, Wang F (2018) Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. J Solid State Electrochem 22:3873–3881

    Article  CAS  Google Scholar 

  68. Kang L, Sun S-X, Kong L-B, Lang J-W, Luo Y-C (2014) Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chin Chem Lett 25:957–961

    Article  CAS  Google Scholar 

  69. Purkait T, Singh G, Singh M, Kumar D, Dey RS (2017) Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  70. Krishnamoorthy K, Pazhamalai P, Sahoo S, Kim S-J (2017) Titanium carbide sheet based high performance wire type solid state supercapacitors. J Mater Chem A 5:5726–5736

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Management of Bishop Heber College (Autonomous) Tiruchirappalli-620 017, Tamil Nadu, for the support and facilities provided through Material Chemistry Lab, PG and Research Department of Chemistry and DST-FIST Instrumentation Centre (HAIF) at Bishop Heber College. A. Bella sincerely acknowledges DST, Government of India for having sanctioned financial assistance through DST-WOS-A scheme (File No: SR/WOS-A/CS-22/2016) to perform computational studies. The authors thank Cauvery College for Women (autonomous), Tiruchirappalli-620 018, for providing instrument facility under the support of DST-FIST-Level ‘O’ Programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Subha or J. Princy Merlin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumar, S., Subha, R., Gowri, S. et al. Enhanced electrochemical performance of aminophenol-modified ZnO as electrode material for supercapacitors. Ionics 28, 859–869 (2022). https://doi.org/10.1007/s11581-021-04321-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04321-5

Keywords

Navigation