Skip to main content
Log in

Facile Synthesis of Magnetic Bentonite–Chitosan–Pd Nanocomposite: As a Recoverable Nanocatalyst for Reduction of Nitroarenes and Suzuki–Miyaura Reaction

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, a facile approach successfully developed a new Pd nanocatalyst supported by magnetic bentonite–chitosan with easy accessibility to active sites and a high surface area. The synthesized Fe3O4/Bentonite/Chitosan/Pd nanocatalyst indicated a good catalytic activity for the reduction of nitroarene compounds and the Suzuki–Miyaura reaction in water at mild conditions. Importantly, the Fe3O4/Bentonite/Chitosan/Pd nanocatalyst was readily recovered and reused for at least five cycles in both reactions; therefore, proving its good stability. These results demonstrate that magnetic bentonite is suitable to support, and it can be utilized for various catalytic systems as support.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. M. Nasrollahzadeh, Z. Nezafat, M.G. Gorab, M. Sajjadi, Recent progresses in graphene-based (photo) catalysts for reduction of nitro compounds. J. Mol. Catal. 484, 110758 (2020)

    Article  Google Scholar 

  2. D. Mitra, C. Zhou, M.H. Hashim, T.M. Hang, K.Y. Gin, C.H. Wang, K.G. Neoh, Emerging pharmaceutical and organic contaminants removal using carbonaceous waste from oil refineries. Chemosphere 271, 129542 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. D. Montanaro, R. Lavecchia, E. Petrucci, A. Zuorro, UV-assisted electrochemical degradation of coumarin on boron-doped diamond electrodes. J. Chem. Eng. 323, 512–519 (2017)

    Article  CAS  Google Scholar 

  4. P. Mohammadi, M. Heravi, M. Daraie, Ag nanoparticles immobilized on new magnetic alginate halloysite as a recoverable catalyst for reduction of nitroaromatics in aqueous media. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  5. P.M. Kulkarni, Effect of shock and mixed loading on the performance of SND based sequencing batch reactors (SBR) degrading nitrophenols. Water Res. 46(7), 2405–2414 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. P.M. Kulkarni, Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR). Bioresour. Technol. 128, 273–280 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. N. Vahedi-Notash, M. Heravi, A. Alhampour, P. Mohammadi, Ag nanoparticles immobilized on new mesoporous triazine-based carbon (MTC) as green and recoverable catalyst for reduction of nitroaromatic in aqueous media. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  8. R. Ghorbani-Vaghei, H. Veisi, M.H. Aliani, P. Mohammadi, B. Karmakar, Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. J. Mol. Liq. 327, 114868 (2021)

    Article  CAS  Google Scholar 

  9. H. Veisi, B. Karmakar, T. Tamoradi, R. Tayebee, S. Sajjadifar, S. Lotfi, B. Maleki, S. Hemmati, Bio-inspired synthesis of palladium nanoparticles fabricated magnetic Fe3O4 nanocomposite over Fritillaria imperialis flower extract as an efficient recyclable catalyst for the reduction of nitroarenes. Sci. Rep. 11(1), 1–5 (2021)

    Article  Google Scholar 

  10. M. Çalışkan, S. Akay, B. Kayan, T. Baran, D. Kalderis, Preparation and application of a hydrochar-based palladium nanocatalyst for the reduction of nitroarenes. Molecules 26(22), 6859 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Shokouhimehr, T. Kim, S.W. Jun, K. Shin, Y. Jang, B.H. Kim, J. Kim, T. Hyeon, Magnetically separable carbon nanocomposite catalysts for efficient nitroarene reduction and Suzuki reactions. Appl. Catal. A- Gen. 476, 133–139 (2014)

    Article  CAS  Google Scholar 

  12. M. Shokouhimehr, J.E. Lee, S.I. Han, T. Hyeon, Magnetically recyclable hollow nanocomposite catalysts for heterogeneous reduction of nitroarenes and Suzuki reactions. ChemComm 49(42), 4779–4781 (2013)

    CAS  Google Scholar 

  13. Z. Dong, X. Le, Y. Liu, C. Dong, J. Ma, Metal organic framework derived magnetic porous carbon composite supported gold and palladium nanoparticles as highly efficient and recyclable catalysts for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. J. Mater. Chem. A 2(44), 18775–18785 (2014)

    Article  CAS  Google Scholar 

  14. B. Nayebi, N. Rabiee, B. Nayebi, M.S. Asl, S. Ramakrishna, H.W. Jang, R.S. Varma, M. Shokouhimehr, Boron nitride-palladium nanostructured catalyst: efficient reduction of nitrobenzene derivatives in water. Nano Express 1(3), 030012 (2020)

    Article  Google Scholar 

  15. C.J. Serpell, J. Cookson, A.L. Thompson, C.M. Brown, P.D. Beer, Haloaurate and halopalladate imidazolium salts: structures, properties, and use as precursors for catalytic metal nanoparticles. Dalton Trans. 42(5), 1385–1393 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. Y. Yu, T. Hu, X. Chen, K. Xu, J. Zhang, J. Huang, Pd nanoparticles on a porous ionic copolymer: a highly active and recyclable catalyst for Suzuki-Miyaura reaction under air in water. ChemComm 47(12), 3592–3594 (2011)

    CAS  Google Scholar 

  17. V. Polshettiwar, C. Len, A. Fihri, Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coord. Chem. Rev. 253(21–22), 2599–2626 (2009)

    Article  CAS  Google Scholar 

  18. A. Ahadi, S. Rostamnia, P. Panahi, L.D. Wilson, Q. Kong, Z. An, M. Shokouhimehr, Palladium comprising dicationic bipyridinium supported periodic mesoporous organosilica (PMO): Pd@ Bipy–PMO as an efficient hybrid catalyst for Suzuki-Miyaura cross-coupling reaction in water. Catalysts 9(2), 140 (2019)

    Article  Google Scholar 

  19. A. Balanta, C. Godard, C. Claver, Pd nanoparticles for C-C coupling reactions. Chem. Soc. Rev. 40(10), 4973–4985 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. L.L. Chng, N. Erathodiyil, J.Y. Ying, Nanostructured catalysts for organic transformations. Acc. Chem. Res. 46(8), 1825–1837 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. F. Zaera, Nanostructured materials for applications in heterogeneous catalysis. Chem. Soc. Rev. 42(7), 2746–2762 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. J. Sun, L. Chen, Superparamagnetic POT/Fe3O4 nanoparticle composites with supported Au nanoparticles as recyclable high-performance nanocatalysts. Mater. Today Chem. 5, 43–51 (2017)

    Article  Google Scholar 

  23. D. Wang, H. Duan, J. Lü, C. Lü, Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@ Fe3O4@ Au magnetic nanocomposites for enhanced catalytic applications. J. Mater. Chem. 5(10), 5088–5097 (2017)

    Article  CAS  Google Scholar 

  24. I. Sargin, T. Baran, G. Arslan, Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Sep. Purif. Technol. 247, 116987–211697 (2020)

    Article  CAS  Google Scholar 

  25. M. Wang, G. Tan, H. Ren, A. Xia, Y. Liu, Direct double Z-scheme Og-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Appl. Surf. Sci. 492, 690–702 (2019)

    Article  CAS  Google Scholar 

  26. G. Meng, X. Zhang, C. Liu, J. Wu, X. Guo, Z. Liu, Ag quantum dot/montmorillonite composites with fluorescent properties: an efficient catalyst. Res. Chem. Intermed. 43(12), 7137–7145 (2017)

    Article  CAS  Google Scholar 

  27. M. Shahabi Nejad, S. Behzadi, H. Sheibani, Multilayer-functionalized reduced graphene oxide decorated with gold nanoparticles as a designed nanonanocatalyst for the selective oxidation of cyclohexene by molecular oxygen in a solvent-free system. Appl. Organomet. Chem. 33(10), e5166 (2019)

    Article  Google Scholar 

  28. T. Baran, N.Y. Baran, A. Menteş, Highly active and recyclable heterogeneous palladium catalyst derived from guar gum for fabrication of biaryl compounds. Int. J. Biol. Macromol. 132, 1147–1154 (2019)

    Article  CAS  PubMed  Google Scholar 

  29. M. Shirvani, H.R. Rafiei, S. Bakhtiary, B. Azimzadeh, S. Amani, Equilibrium, kinetic, and thermodynamic studies on nickel removal from aqueous solutions using Ca-bentonite. Desalin Water Treat 54, 464–472 (2015)

    Article  CAS  Google Scholar 

  30. G. Ding, W. Wang, T. Jiang, B. Han, An efficient palladium catalyst on bentonite for Suzuki-Miyaura reaction at room temperature. Green Chem. 15, 3396–3403 (2013)

    Article  CAS  Google Scholar 

  31. T. Baran, A. Menteş, Microwave assisted synthesis of biarlys by CC coupling reactions with a new chitosan supported Pd (II) catalyst. J. Mol. Struct. 1122, 111–116 (2016)

    Article  CAS  Google Scholar 

  32. I. Wysocka, E. Kowalska, K. Trzciński, M. Łapiński, G. Nowaczyk, A. Zielińska-Jurek, UV-Vis-induced degradation of phenol over magnetic photocatalysts modified with Pt, Pd, Cu and Au nanoparticles. Nanomaterials 8(1), 28 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  33. I. Rosa-Pardo, M. Roig-Pons, A.A. Heredia, J.V. Usagre, A. Ribera, R.E. Galian, J. Pérez-Prieto, Fe3O4@ Au@ mSiO2 as an enhancing nanoplatform for Rose Bengal photodynamic activity. Nanoscale 9(29), 10388–10396 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Y.S. Wang, Y. Wang, H. Xia, G. Wang, Z.Y. Zhang, D.D. Han, C. Lv, J. Feng, H.B. Sun, Preparation of a Fe3O4–Au–GO nanocomposite for simultaneous treatment of oil/water separation and dye decomposition. Nanoscale 8(40), 17451–17457 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. H. Daneshafruz, H. Barani, H. Sheibani, Palladium nanoparticles-decorated β-cyclodextrin–cyanoguanidine modified graphene oxide: a heterogeneous nanocatalyst for Suzuki-Miyaura coupling and reduction of 4-nitrophenol reactions in aqueous media. J. Inorg. Organomet. Polym. Mater. 7, 1–2 (2022)

    Google Scholar 

  36. P. Mohammadi, H. Sheibani, Synthesis and characterization of Fe3O4@ SiO2 guanidine-poly acrylic acid nanocatalyst and using it for one-pot synthesis of 4H-benzo [b] pyrans and dihydropyrano [c] chromenes in water. Mater. Chem. Phys. 228, 140–146 (2019)

    Article  CAS  Google Scholar 

  37. P. Mohammadi, H. Daneshafruz, H. Sheibani, Gold nanoparticles on cyanuric citric acid functionalized magnetic SBA-16 as an effective catalyst for dye reduction. Physica. E Low Dimens. Syst. Nanostruct. 126, 114392 (2021)

    Article  CAS  Google Scholar 

  38. K. Atkovska, B. Bliznakovska, G. Ruseska, S. Bogoevski, B. Boskovski, A. Grozdanov, Adsorption of Fe (II) and Zn (II) ions from landfill leachate by natural Bentonite. J. Chem. Technol. Metall. 51(2), 215 (2016)

    CAS  Google Scholar 

  39. N. Banik, S.A. Jahan, S. Mostofa, H. Kabir, N. Sharmin, M. Rahman, S. Ahmed, Synthesis and characterization of organoclay modified with cetylpyridinium chloride. Bangladesh J. Sci. Ind. Res. Res. 50(1), 65–70 (2015)

    Article  CAS  Google Scholar 

  40. F. Meng, L. Wang, M. Pei, W. Guo, G. Liu, Adsorption of metanil yellow from aqueous solution using polyaniline-bentonite composite. Colloid. Polym. Sci. 295(7), 1165–1175 (2017)

    Article  CAS  Google Scholar 

  41. N. Majoul, S. Aouida, B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations. Appl. Surf. Sci. 331, 388–391 (2015)

    Article  CAS  Google Scholar 

  42. P. Kumararaja, K.M. Manjaiah, S.C. Datta, T.P. Ahammed Shabeer, B. Sarkar, Chitosan-g-poly (acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil. Cellulose 25(7), 3985–3999 (2018)

    Article  CAS  Google Scholar 

  43. T. Baran, Highly recoverable, reusable, cost-effective, and Schiff base functionalized pectin supported Pd(II) catalyst for microwave-accelerated Suzuki cross-coupling reactions. Int. J. Biol. Macromol. 127, 232–239 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. H. Barani, A. Miri, H. Sheibani, Comparative study of electrically conductive cotton fabric prepared through the in situ synthesis of different conductive materials. Cellulose 28(10), 6629–6649 (2021)

    Article  CAS  Google Scholar 

  45. M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12), 5549–5567 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. I.Z. Hager, Y.S. Rammah, H.A. Othman, E.M. Ibrahim, S.F. Hassan, F.H. Sallam, Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma ray’s attenuation. J. Theor. Appl. Phys. 13(2), 141–153 (2019)

    Article  Google Scholar 

  47. M.E. Badawy, T.M. Lotfy, S. Shawir, Preparation and antibacterial activity of chitosan-silver nanoparticles for application in preservation of minced meat. Bull. Natl. Res. Cent. 43(1), 1–4 (2019)

    Article  Google Scholar 

  48. M. Khazaei, A. Khazaei, M. Nasrollahzadeh, M.R. Tahsili, Highly efficient reusable Pd nanoparticles based on eggshell: green synthesis, characterization and their application in catalytic reduction of variety of organic dyes and ligand-free oxidative hydroxylation of phenylboronic acid at room temperature. Tetrahedron 73(38), 5613–5623 (2017)

    Article  CAS  Google Scholar 

  49. H. Aminzadeh, M. Shahabi Nejad, I. Mohammadzadeh, H. Sheibani, Assembly of CuO nanorods onto poly (glycidylmethacrylate)@polyaniline core–shell microspheres: photocatalytic degradation of paracetamol. Appl. Organomet. Chem. 35(12), e6423 (2021)

    Article  CAS  Google Scholar 

  50. K. Layek, M.L. Kantam, M. Shirai, D. Nishio-Hamane, T. Sasaki, H. Maheswaran, Gold nanoparticles stabilized on nanocrystalline magnesium oxide as an active catalyst for reduction of nitroarenes in aqueous medium at room temperature. Green Chem. 14, 3164–3174 (2012)

    Article  CAS  Google Scholar 

  51. M.B. Gawande, A.K. Rathi, P.S. Branco, I.D. Nogueira, A. Velhinho, J.J. Shrikhande, U.U. Indulkar, R.V. Jayaram, C.A.A. Ghumman, N. Bundaleski, Regio-and chemoselective reduction of nitroarenes and carbonyl compounds over recyclable magnetic ferrite-nickel nanoparticles (Fe3O4-Ni) by using glycerol as a hydrogen source. Chem. A. Eur J. 18, 12628–12632 (2012)

    Article  CAS  Google Scholar 

  52. S. Giri, R. Das, C. van der Westhuyzen, A. Maity, an efficient selective reduction of nitroarenes catalyzed by reusable silver-adsorbed waste nanocomposite. Appl. Catal. B Environ. 209, 669–678 (2017)

    Article  CAS  Google Scholar 

  53. F. Yang, C. Chi, C. Wang, Y. Wang, Y. Li, High graphite N content in nitrogen doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chem. 18, 4254–4262 (2016)

    Article  CAS  Google Scholar 

  54. N. Salam, B. Banerjee, A.S. Roy, P. Mondal, S. Roy, A. Bhaumik, S.M. Islam, Silver nanoparticles embedded over mesoporous organic polymer as highly efficient and reusable nanocatalyst for the reduction of nitroarenes and aerobic oxidative esterification of alcohols. Appl. Catal. Gen. 477, 184–194 (2014)

    Article  CAS  Google Scholar 

  55. E. Ghonchepour, M.R. Islami, B. Bananezhad, H. Mostafavi, A.M. Tikdari, Synthesis of recoverable palladium composite as an efficient catalyst for the reduction of nitroarene compounds and Suzuki cross-coupling reactions using sepiolite clay and magnetic nanoparticles (Fe3O4@sepiolite-Pd2+). C. R. Chem. 22, 84–95 (2019)

    Article  CAS  Google Scholar 

  56. R.K. Sharma, Y. Monga, A. Puri, magnetically separable silica@Fe3O4 core-shell supported nano-structured copper(II) composites as a versatile catalyst for the reduction of nitroarenes in aqueous medium at room temperature. J. Mol. Catal. Chem. 393, 84–95 (2014)

    Article  CAS  Google Scholar 

  57. M. Kim, E. Heo, A. Kim, J.C. Park, H. Song, K.H. Park, Synthesis of Pd/SiO2 nanobeads for use in Suzuki coupling reactions by reverse micelle sol–gel process. Catal Lett. 142(5), 588–593 (2012)

    Article  CAS  Google Scholar 

  58. S.P. Kitney, F. Cheng, S. Khan, C.N. Hope, W. McNab, S.M. Kelly, Synthesis of liquid crystals using Suzuki-Miyaura coupling reactions using mesoporous, ligand-free Pd/Si3N4 catalysts in aqueous media. Liq. Cryst. 38(8), 1027–1033 (2011)

    Article  CAS  Google Scholar 

  59. Ö. Metin, S.F. Ho, C. Alp, H. Can, M.N. Mankin, M.S. Gültekin, M. Chi, S. Sun, Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 6(1), 10–18 (2013)

    Article  CAS  Google Scholar 

  60. R. Sedghi, B. Heidari, H. Shahmohamadi, P. Zarshenas, R.S. Varma, Pd nanocatalyst adorned on magnetic chitosan@ N-heterocyclic carbene: eco-compatible Suzuki cross-coupling reaction. Molecules 24(17), 3048 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. Çalışkan, T. Baran, M. Nasrollahzadeh, Facile preparation of nanostructured Pd-Sch-δ-FeOOH particles: a highly effective and easily retrievable catalyst for aryl halide cyanation and p-nitrophenol reduction. J. Phys. Chem. Solids 152, 109968 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Shahid Bahonar the University of Kerman and Birjand University.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for -profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HD: Writing the main text of the manuscript, Preparing the figures, Researching, and Data curation. PM: Idea of the article, Analysis of results, Supervision, Review and editing, Project management. HB: Review and editing, Supervision. HS: Review and editing, Supervision, Project management. All authors read and approved the final version.

Corresponding authors

Correspondence to Pourya Mohammadi or Hassan Sheibani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daneshafruz, H., Mohammadi, P., Barani, H. et al. Facile Synthesis of Magnetic Bentonite–Chitosan–Pd Nanocomposite: As a Recoverable Nanocatalyst for Reduction of Nitroarenes and Suzuki–Miyaura Reaction. J Inorg Organomet Polym 33, 1052–1065 (2023). https://doi.org/10.1007/s10904-023-02558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02558-3

Keywords

Navigation