Skip to main content

Advertisement

Log in

Nanoarchitectonics of Silver/Poly (Methyl Methacrylate) Films: Structure, Optical Characteristics, Antibacterial Activity, and Wettability

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Functionalizing organic–inorganic materials for use in packaging technologies, such as polymers wrapped in thin metal, has proven to be one of the more successful strategies. In this study, the direct current (DC) sputtering technique under a vacuum of 3 × 10−5 Torr was used to deposit silver (Ag) films of thicknesses of 100 and 300 nm on poly (methyl methacrylate) (PMMA) polymer. The structural, optical, antibacterial activity, and wettability properties of Ag/PMMA were carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), atomic force microscopy (AFM), UV spectrophotometer, and contact angle. The cubic crystal structure phase of Ag was confirmed by the XRD. The Ag coating layer has consistent nanomorphology, according to AFM, and the PMMA substrate surface was well coated with Ag nanoparticles. As the Ag film thickness rose, the optical band gap values of Ag/PMMA slightly increased. In addition, it has been found that these optical characteristics such as extension coefficient, optical density, and optical surface resistance essentially depend on the thickness of the Ag layers. Both samples of pure PMMA and Ag/PMMA polymers show no activity against E. coli. In the meantime, S. aureus activity is detected in the Ag/PMMA samples, and the antibacterial activity is slightly influenced by the Ag thickness. The contact angle rose as the Ag film thickness grew over the PMMA, resulting in a decrease in the wettability of the liquid which is required for food packaging technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. M.A. Morsi et al., Hybrid MWCNTs/Ag nanofiller reinforced PVP/CMC blend-based polymer nanocomposites for multifunctional optoelectronic and nanodielectric applications. J. Polym. Environ. (2022). https://doi.org/10.1007/s10924-022-02656-2

    Article  Google Scholar 

  2. K. Ariga, Nanoarchitectonics: what’s coming next after nanotechnology? Nanoscale Horizons 6(5), 364–378 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. E. Azmy et al., Impact of nanoparticles additions on the strength of dental composite resin. Int. J. Biomater. 2022, 1–9 (2022)

    Google Scholar 

  4. R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, A. Elharfi, Polymer composite materials: a comprehensive review. Compos. Struct. 262, 113640 (2021)

    Article  CAS  Google Scholar 

  5. M. Alsawafta, S. Badilescu, A. Paneri, V.-V. Truong, M. Packirisamy, Gold-poly (methyl methacrylate) nanocomposite films for plasmonic biosensing applications. Polymers 3(4), 1833–1848 (2011)

    Article  CAS  Google Scholar 

  6. D.F. Katowah et al., Selective Hg2+ sensor performance based various carbon-nanofillers into CuO-PMMA nanocomposites. Polym. Adv. Technol. 31(9), 1946–1962 (2020)

    Article  CAS  Google Scholar 

  7. M. Rahman et al., Preparation, characterization, and evaluation of curcumin-graphene oxide complex-loaded liposomes against staphylococcus aureus in topical disease. ACS Omega 7, 43499 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. V. Karoutsos, I. Koutselas, P. Orfanou, T. Mpatzaka, M. Vasileiadis, A. Vassilakopoulou, N.A. Vainos, A. Perrone, One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition. Appl. Phys. A 120(2), 707–716 (2015)

    Article  CAS  Google Scholar 

  9. D.F. Katowah, S. Alqarni, G.I. Mohammed, S.Z. AlSheheri, M.M. Alam, S.H. Ismail, A.M. Asiri, M.A. Hussein, M.M. Rahman, Selective Hg2+ sensor performance based various carbon-nanofillers into CuO-PMMA nanocomposites. Polym. Adv. Technol. 31(9), 1946–1962 (2020)

    Article  CAS  Google Scholar 

  10. S.K. Kumar, B.C. Benicewicz, R.A. Vaia, K.I. Winey, 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 50(3), 714–731 (2017)

    Article  CAS  Google Scholar 

  11. I. Prosyčevas, J. Puišo, A. Guobienė, S. Tamulevičius, R. Naujokaitis, Investigation of silver polymer nanocomposites. Mater. Sci. 13(3), 188–192 (2007)

    Google Scholar 

  12. M. Akashi, T. Akagi, Composite materials by building block chemistry using weak interaction. Bull. Chem. Soc. Jpn. 94(7), 1903–1921 (2021)

    Article  CAS  Google Scholar 

  13. M.A. Forte, R.M. Silva, C.J. Tavares, R.F.E. Silva, Is poly (methyl methacrylate) (PMMA) a suitable substrate for ALD? A review. Polymers 13(8), 1346 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.R.M. Asyraf et al., Mechanical properties of oil palm fibre-reinforced polymer composites: a review. J. Market. Res. 17(33), 5–34 (2022)

    Google Scholar 

  15. M.G. Faraj, K. Ibrahim, M.H. Eisa, M.K.M. Ali, F. Azhari, Investigation on molybdenum thin films deposited by DC-sputtering on polyethylene terephthalate substrate. Int. J. Polym. Mater. 59(8), 622–627 (2010)

    Article  CAS  Google Scholar 

  16. M.K. Mohammed, G. Al-Dahash, A. Al-Nafiey, Fabrication and characterization of the PMMA/G/Ag nanocomposite by pulsed laser ablation (PLAL). Nano Biomed. Eng 14, 15–22 (2022)

    Article  CAS  Google Scholar 

  17. K.S. Khashan, G.M. Sulaiman, S.A. Hussain, Synthesis and characterization of aluminum doped zinc oxide nanostructures by Nd: YAG laser in liquid. Iraq. J. Sci. (2020). https://doi.org/10.24996/ijs.2020.61.10.15

    Article  Google Scholar 

  18. B. Fuchs, F. Schlenkrich, S. Seyffarth, A. Meschede, R. Rotzoll, P. Vana, P. Großmann, K. Mann, H.-U. Krebs, Hardening of smooth pulsed laser deposited PMMA films by heating. Appl. Phys. A 98(4), 711–715 (2010)

    Article  CAS  Google Scholar 

  19. W.A. Al-Taa’y, H. Ibraheem, E. Yousif, H. Jelassi, Studies on surface morphology and electrical conductivity of PS thin films in presence of divalent complexes. Baghdad Sci. J. 16(3), 588 (2019)

    Article  Google Scholar 

  20. T.P. Rao, R. Kala, S. Daniel, Metal ion-imprinted polymers—novel materials for selective recognition of inorganics. Anal. Chim. Acta 578, 105–116 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. M.O. Mavukkandy, S.A. McBride, D.M. Warsinger, N. Dizge, S.W. Hasan, H.A. Arafat, Thin film deposition techniques for polymeric membranes—a review. J. Membr. Sci. 610, 118258 (2020)

    Article  CAS  Google Scholar 

  22. E. Schilirò et al., Seed-layer-free atomic layer deposition of highly uniform Al2O3 thin films onto monolayer epitaxial graphene on silicon carbide. Adv. Mater. Interfaces 6(10), 1900097 (2019)

    Article  Google Scholar 

  23. M. Alamri, Bo. Liu, S.M. Sadeghi, D. Ewing, A. Wilson, J.L. Doolin, C.L. Berrie, Wu. Judy, Graphene/WS2 nanodisk Van der Waals heterostructures on plasmonic Ag nanoparticle-embedded silica metafilms for high-performance photodetectors. ACS Appl. Nano Mater. 3(8), 7858–7868 (2020)

    Article  CAS  Google Scholar 

  24. H.M. Fahmy, A.M. Mosleh, A.A. Elghany, E. Shams-Eldin, E.S.A. Serea, S.A. Ali, A.E. Shalan, Coated silver nanoparticles: synthesis, cytotoxicity, and optical properties. RSC Adv. 9(35), 20118–20136 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Hanaa, A. Youssef, E. El-Metwally, M. Abdelaal, Preparation and characterization of novel poly (MMA-co-GMA)/Ag nanocomposites for biomedical applications. Egypt. J. Chem. 62(12), 2245–2252 (2019)

    Google Scholar 

  26. F.G. Hachim, Effect of thickness and thermal annealing on optical properties of Sb thin films. Iraqi J. Sci. 54(3), 612–616 (2013)

    Google Scholar 

  27. I.A. Hamad, R.I. Khaleel, A.M. Raoof, Structural and optical properties for nanostructure (Ag2O/Si & Psi) films for photodetector applications. Baghdad Sci. J. 16, 1036 (2019)

    Article  Google Scholar 

  28. B.A. Hasan, Effect of indium content on X-ray diffraction and optical constants of InxSe1-x thin films. Iraqi J. Phys. 14(29), 55–72 (2016)

    Article  Google Scholar 

  29. G.G. Carbone, A. Serra, A. Buccolieri, D. Manno, A silver nanoparticle-poly (methyl methacrylate) based colorimetric sensor for the detection of hydrogen peroxide. Heliyon 5, e02887 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  30. H.-T. Chen, H.-L. Lin, I.-G. Chen, C. Kuo, Conducting silver networks based on electrospun poly (methyl methacrylate) and silver trifluoroacetate. ACS Appl. Mater. Interfaces 7(18), 9479–9485 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. F.-A. Juan Carlos et al., Antimicrobial poly (methyl methacrylate) with silver nanoparticles for dentistry: a systematic review. Appl. Sci. 10(11), 4007 (2020)

    Article  Google Scholar 

  32. O. Lyutakov, O. Hejna, A. Solovyev, Y. Kalachyova, V. Svorcik, Polymethylmethacrylate doped with porphyrin and silver nanoparticles as light-activated antimicrobial material. RSC Adv. 4(92), 50624–50630 (2014)

    Article  CAS  Google Scholar 

  33. R.D. Deshmukh, R.J. Composto, Surface segregation and formation of silver nanoparticles created in situ in poly (methyl methacrylate) films. Chem. Mater. 19(4), 745–754 (2007)

    Article  CAS  Google Scholar 

  34. N.D. Singho et al., Enhancement of the refractive index of silver nanoparticles in poly (methyl methacrylate). Int. J. Res. Eng. Technol. 1, 231–234 (2012)

    Google Scholar 

  35. V. De Matteis et al., Silver nanoparticles addition in poly (methyl methacrylate) dental matrix: topographic and antimycotic studies. Int. J. Mol. Sci. 20(19), 4691 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Hanif et al., Poly (methyl methacrylate) composites with size-selected silver nanoparticles fabricated using cluster beam technique. J. Polym. Sci. B 54(12), 1152–1159 (2016)

    Article  CAS  Google Scholar 

  37. H. Kong, J. Jang, Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir 24(5), 2051–2056 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. S.-P. Ju, H.-Y. Chen, C.-W. Shih, Investigating mechanical properties of polymethylmethacrylate/silver nanoparticle composites by molecular dynamics simulation. J. Nanopart. Res. 20(1), 1–17 (2018)

    Article  CAS  Google Scholar 

  39. P. Makvandi et al., Effect of silver nanoparticle on the properties of poly (methyl methacrylate) nanocomposite network made by in situ photoiniferter-mediated photopolymerization. Bull. Mater. Sci. 38(6), 1625–1631 (2015)

    Article  CAS  Google Scholar 

  40. A. Akhavan, N. Sheikh, R. Beteshobabrud, Polymethylmethacrylate/silver nanocomposite prepared by γ-ray. J. Nucl. Sci. Technol. (JonSat) 30(4), 80–84 (2010)

    Google Scholar 

  41. E.H. Alsharaeh, Polystyrene-poly (methyl methacrylate) silver nanocomposites: significant modification of the thermal and electrical properties by microwave irradiation. Materials 9, 458 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  42. G. Chladek et al., Effect of antibacterial silver-releasing filler on the physicochemical properties of poly (methyl methacrylate) denture base material. Materials 12(24), 4146 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J.-H. Yeum, Y. Deng, Synthesis of high molecular weight poly (methyl methacrylate) microspheres by suspension polymerization in the presence of silver nanoparticles. Colloid Polym. Sci. 283(11), 1172–1179 (2005)

    Article  CAS  Google Scholar 

  44. D. Basak, S. Karan, B. Mallik, Size selective photoluminescence in poly (methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method. Chem. Phys. Lett. 420(1–3), 115–119 (2006)

    Article  CAS  Google Scholar 

  45. Ch. Pandis et al., Glass transition and polymer dynamics in silver/poly (methyl methacrylate) nanocomposites. Eur. Polym. J. 47(8), 1514–1525 (2011)

    Article  CAS  Google Scholar 

  46. D. Basak, S. Karan, B. Mallik, Significant modifications in the electrical properties of poly (methyl methacrylate) thin films upon dispersion of silver nanoparticles. Solid State Commun. 141(9), 483–487 (2007)

    Article  CAS  Google Scholar 

  47. R. Grujic, M. Vukic, V. Gojkovic, Application of biopolymers in the food industry, in Advances in applications of industrial biomaterials. ed. by E. Pellicer, D. Nikolic, J. Sort, M. Baró, F. Zivic, N. Grujovic, R. Grujic, S. Pelemis (Springer, Cham, 2017), pp.103–119

    Chapter  Google Scholar 

  48. F. Mustafa, S. Andreescu, Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7(10), 168 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. Ahmad, S. Ahmad, S.A. Agnihotry, Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites. Bull. Mater. Sci. 30, 31–35 (2007)

    Article  CAS  Google Scholar 

  50. J.K. Pandey, W.S. Chu, C.S. Kim, C.S. Lee, S.H. Ahn, Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Composite B 40(7), 676–680 (2009)

    Article  Google Scholar 

  51. H.Q. Zhang, Y. Jin, and Y. Qiu. "The optical and electrical characteristics of PMMA film prepared by spin coating method." In IOP Conference Series: Materials Science and Engineering, vol. 87, no. 1, p. 012032. IOP Publishing (2015).

  52. S. Sain et al., Synthesis and characterization of PMMA-cellulose nanocomposites by in situ polymerization technique. J. Appl. Polym. Sci. 126, E127–E134 (2012)

    Article  CAS  Google Scholar 

  53. S. Ramesh, K.H. Leen, K. Kumutha, A.K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimica Acta Part A 66, 1237–1242 (2007)

    Article  CAS  Google Scholar 

  54. S. Bhattacharjee et al., Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity. Adv. Nat. Sci. 8, 045008 (2017)

    Google Scholar 

  55. M.Z. Kassaee, M. Mohammadkhani, A. Akhavan et al., In situ formation of silver nanoparticles in PMMA via reduction of silver ions by butylated hydroxytoluene. Struct. Chem. 22, 11–15 (2011)

    Article  CAS  Google Scholar 

  56. E. Shobhana, X-Ray diffraction and UV–visible studies of PMMA thin films. Int. J. Mod. Eng. Res. 2(3), 1092–1095 (2012)

    Google Scholar 

  57. A. Kadhim, H.R. Humud, L.A. Al Kareem, XRD and FTIR studies for Ag/PMMA nano composite thin films. Int. J. Comput. Appl. Sci. 1, 21–27 (2016)

    Google Scholar 

  58. P.J.N.G.W.G. Scherrer, Estimation of the size and internal structure of colloidal particles by means of röntgen. Nachr. Ges. Wiss. Göttingen 2, 96–100 (1918)

    Google Scholar 

  59. J. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  CAS  Google Scholar 

  60. F.T.L. Muniz, M.A.R. Miranda, C.M. Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. A 72, 385–390 (2016)

    Article  CAS  Google Scholar 

  61. Q.M. Al-Bataineh, A.A. Ahmad, A.M. Alsaad, A.D. Telfah, Optical characterizations of PMMA/metal oxide nanoparticles thin films: bandgap engineering using a novel derived model. Heliyon 7, e05952 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. Hu, S. Zhou, Wu. Limin, Surface mechanical properties of transparent poly (methyl methacrylate)/zirconia nanocomposites prepared by in situ bulk polymerization. Polymer 50(15), 3609–3616 (2009)

    Article  CAS  Google Scholar 

  63. R.M. Hassan, S. Moustafa, Abd-Elnaiem, Optimization of the linear and nonlinear optical properties of amorphous As30Te69Ga1 thin films by the annealing process. J. Mater. Sci. 31, 20043–20059 (2020)

    Google Scholar 

  64. El-Zahed, Optical absorption study of amorphous CuxGe20−xTe80 films as a function of composition. Physica B 307, 95–104 (2001)

    Article  CAS  Google Scholar 

  65. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2(6), 2045 (1970)

    Article  Google Scholar 

  66. M. Bogunia, M. Makowski, Influence of ionic strength on hydrophobic interactions in water: dependence on solute size and shape. J. Phys. Chem. B 124(46), 10326–10336 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Y. Liu, S. Ahmed, D.E. Sameen, Y. Wang, Lu. Rui, J. Dai, S. Li, W. Qin, A review of cellulose and its derivatives in biopolymer-based for food packaging application. Trends Food Sci. Technol. 112, 532–546 (2021)

    Article  CAS  Google Scholar 

  68. A. Kumar, S. Singh, A.K. Gaurav, S. Srivastava, J.P. Verma, Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Front. Microbiol. 11, 1216 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  69. D. Ahmad, I. van den Boogaert, J. Miller, R. Presswell, H. Jouhara, Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A 40, 2686–2725 (2018)

    Article  CAS  Google Scholar 

  70. K. Grundke et al., Experimental studies of contact angle hysteresis phenomena on polymer surfaces—toward the understanding and control of wettability for different applications. Adv. Colloid Interfaces Sci. 222, 350–376 (2015)

    Article  CAS  Google Scholar 

  71. V. Suvarna, A. Nair, R. Mallya, T. Khan, A. Omri, Antimicrobial nanomaterials for food packaging. Antibiotics 11(6), 729 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. H. Palza, Antimicrobial polymers with metal nanoparticles. Int. J. Mol. Sci. 16(1), 2099–2116 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. B.S. Mirhoseini, A. Salabat, A novel surfactant-free microemulsion system for the synthesis of poly (methyl methacrylate)/Ag nanocomposite. J. Mol. Liquids 342, 117555 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code (22UQU4250045DSR27).

Funding

This work is funded by the Deanship of Scientific Research at Umm Al-Qura University Grant Code (22UQU4250045DSR27).

Author information

Authors and Affiliations

Authors

Contributions

ANMA: Data curation; methodology; writing the original draft. NAA: Investigation; methodology; writing the original draft. SIH: Investigation, Formal analysis; resources, writing the original draft. AH: Data curation; formal analysis; investigation, writing the original draft. AMA‑E: Data curation; methodology; writing the original draft. All authors have read, revised, and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alaa M. Abd‑Elnaiem.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed Ali, A.N., Ali, N.A., Hussein, S.I. et al. Nanoarchitectonics of Silver/Poly (Methyl Methacrylate) Films: Structure, Optical Characteristics, Antibacterial Activity, and Wettability. J Inorg Organomet Polym 33, 694–706 (2023). https://doi.org/10.1007/s10904-022-02525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02525-4

Keywords

Navigation