Skip to main content
Log in

FRET Mechanism of SnO2 Integrated Luminescent g-C3N4 Nanocomposite and Its Robust Chemical, Optical and Thermal States for Emissive Layer Application

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

We report for one step calcination synthesis of SnO2 integrated luminescent graphitic carbon nitride (g-C3N4) nanocomposite. X-ray diffraction, Fourier transform infrared spectroscopy, and Energy dispersive X-ray spectroscopy techniques were used to examine the structural, chemical, and elemental states of the nanocomposites. Morphological, surface elemental presence and chemical state of the elements were studied through the field emission scanning electron microscope and X-ray photoelectron spectroscopy. In-depth morphology was investigated using the High-resolution transmission electron microscope. UV-VIS and Photoluminescence  spectroscopy have been employed to study the optical properties of the nanocomposites. Optical band gaps and optical conductivities of the nanocomposites were computed through Tauc’s plot using UV-VIS spectra.We observed that optical band gap reduces after insertion of the SnO2 nanoparticles in g-C3N4 owing to unsaturated defect states. Varying concentration of SnO2 nanoparticles were mixed with g-C3N4 so as to enhance PL intensity of the pure g-C3N4. Highest PL intensity was recorded for 15% g-C3N4/SnO2 nanocomposite lying in the blue region. Maximum color purity was estimated 63.8% for optimized nanocomposite. Blue light emission (480 nm) fortified through Forster resonance energy transfer mechanism. Thermal stability of the said nanocomposite (15% g-C3N4/SnO2) was excelled as compared to pure g-C3N4. Above mentioned properties manifested that the optimized material stands suitable for markedly robust emissive layer for its use in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Cheylan et al., Study of a thiophene-based polymer for optoelectronic applications. Thin Solid Films 497(1–2), 16–19 (2006)

    Article  CAS  Google Scholar 

  2. S. Sweeney, J. Mukherjee, Optoelectronic Devices and Materials. Springer handbook of electronic and photonic materials. (Springer, Cham, 2017), pp.1–1

    Book  Google Scholar 

  3. A. Ghosh et al., Nitrogen vacancy and hydrogen substitution mediated tunable optoelectronic properties of g-C3N4 2D layered structures: applications towards blue LED to broad-band photodetection. Appl. Surf. Sci. 556, 149773 (2021)

    Article  CAS  Google Scholar 

  4. S.H. Mir et al., Review—Organic-inorganic hybrid functional materials: an integrated platform for applied technologies. J. Electrochem. Soc 165(8), B3137–B3156 (2018)

    Article  CAS  Google Scholar 

  5. T. Sahoo et al., Electronic and optical properties of zinc based hybrid organic-inorganic compounds. Mater. Res. Express 7(3), 035701 (2020)

    Article  CAS  Google Scholar 

  6. S. Balu et al., Effect of ultrasound-induced hydroxylation and exfoliation on P90–TiO2/g-C3N4 hybrids with enhanced optoelectronic properties for visible-light photocatalysis and electrochemical sensing. Ceramics Int 46(11), 18002–18018 (2020)

    Article  CAS  Google Scholar 

  7. R. Cheng et al., Incorporation of cesium lead Halide Perovskites into g-C3N4 for photocatalytic CO2 reduction. ACS Omega 5(38), 24495–24503 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun (Cambridge, England) 48, 6178–80 (2012)

    Article  CAS  Google Scholar 

  9. H. Jung, T.-T. Pham, E.W. Shin, Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. J. Alloys Compd. 788, 1084–1092 (2019)

    Article  CAS  Google Scholar 

  10. B. Guruswamy et al., Optical, electrical and thermal properties of SnO2 nanoparticles doped poly vinyl alcohol-poly vinyl pyrrolidone blend polymer electrolyte. Indian J. Adv. Chem. Sci. 6(1), 17–20 (2018)

    CAS  Google Scholar 

  11. K.N. Van et al., Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere 289, 133120 (2022)

    Article  CAS  PubMed  Google Scholar 

  12. J. Cao et al., Solid-state method synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol. Materials 10(6), 604 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  13. A. Zada et al., Accelerating photocatalytic hydrogen production and pollutant degradation by functionalizing g-C3N4 with SnO2. Front. Chem 7, 941 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  14. A.K. Tiwari et al., SnO2:PANI modified cathode for performance enhancement of air-cathode microbial fuel cell. J. Environ. Chem. Eng 8(1), 103590 (2020)

    Article  CAS  Google Scholar 

  15. Y. Zhang et al., Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. rep. 3, 1943 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Y. Duan, Facile preparation of CuO/g-C3N4 with enhanced photocatalytic degradation of salicylic acid. Mater. Res. Bull. 105, 68–74 (2018)

    Article  CAS  Google Scholar 

  17. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Phys. B: Condens. Matter 578, 411796 (2020)

    Article  CAS  Google Scholar 

  18. M.F. Ehsan et al., Reactive oxygen species: new insights into photocatalytic pollutant degradation over g-C3N4/ZnSe nanocomposite. Appl. Surf. Sci. 532, 147418 (2020)

    Article  CAS  Google Scholar 

  19. N. Wan et al., Improved Li storage performance in SnO2 nanocrystals by a synergetic doping. Sci. Rep. 6, 18978 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. X. Chen et al., Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes. RSC Adv 7, 55734–55740 (2017)

    Article  CAS  Google Scholar 

  21. X. Guo et al., Highly efficient Z-scheme g-C3N4/ZnO photocatalysts constructed by co-melting-recrystallizing mixed precursors for wastewater treatment. J. Mater. Sci. 55, 1–14 (2020)

    Article  CAS  Google Scholar 

  22. K. Dhinakar et al., Structural, optical and impedance properties of SnO2 nanoparticles. J. Mater. Sci. Mater. Electron 27(6), 5818–5824 (2016)

    Article  CAS  Google Scholar 

  23. C. Ye et al., The high photocatalytic efficiency and stability of LaNiO3/g-C3N4 heterojunction nanocomposites for photocatalytic water splitting to hydrogen. BMC chem 14(1), 1–13 (2020)

    Article  Google Scholar 

  24. S. Liu et al., One step synthesis of P-doped g-C3N4 with the enhanced visible light photocatalytic activity. Appl. Surf. Sci. 430, 309–315 (2018)

    Article  CAS  Google Scholar 

  25. M. Rashad et al., Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arab. J. Chem 7, 71–77 (2014)

    Article  CAS  Google Scholar 

  26. Paramarta, V., A. Taufik, and R. Saleh, Better adsorption capacity of SnO<sub>2</sub> nanoparticles with different graphene addition. Journal of Physics: Conference Series, 2016. 776(1)

  27. S. Dey, A.K. Kar, Enhanced photoluminescence through Forster resonance energy transfer in Polypyrrole-PMMA blends for application in optoelectronic devices. Mater. Sci. Semiconduct. Process. 103, 104644 (2019)

    Article  CAS  Google Scholar 

  28. P. Praus et al., Nanocomposites of SnO2 and g-C3N4: Preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int 44(4), 3837–3846 (2018)

    Article  CAS  Google Scholar 

  29. Y. Zang et al., Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J 246, 277–286 (2014)

    Article  CAS  Google Scholar 

  30. X. Lu, Q. Wang, D. Cui, Preparation and Photocatalytic Properties of g-C3N4/TiO2 hybrid composite. J. Mater. Sci. Technol 26(10), 925–930 (2010)

    Article  CAS  Google Scholar 

  31. X. Yang et al., Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl. Catal. B 193, 22–35 (2016)

    Article  CAS  Google Scholar 

  32. Q. Zhou et al., Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sens. Actuators B 256, 656–664 (2018)

    Article  CAS  Google Scholar 

  33. D.B. Hernández-Uresti et al., Performance of the polymeric g-C3N4 photocatalyst through the degradation of pharmaceutical pollutants under UV–vis irradiation. J. Photochem. Photobiol. A 324, 47–52 (2016)

    Article  Google Scholar 

  34. H. Shen et al., Enhanced visible light photocatalytic activity in SnO2@g-C3N4 core-shell structures. Mater. Sci. Eng. B 218, 23–30 (2017)

    Article  CAS  Google Scholar 

  35. C. Venkata Reddy et al., Structural, optical, and improved photocatalytic properties of CdS/SnO2 hybrid photocatalyst nanostructure. Mater. Sci. Eng. B 221, 63–72 (2017)

    Article  CAS  Google Scholar 

  36. P. Morozzi et al., Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS), a rapid and non-destructive analytical tool for the identification of Saharan dust events in particulate matter filters. Atmos. Environ. 252, 118297 (2021)

    Article  CAS  Google Scholar 

  37. G.D. Gesesse et al., On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts. J. Photochem. Photobiol., A 398, 112622 (2020)

    Article  CAS  Google Scholar 

  38. V. Mishra et al., Diffuse reflectance spectroscopy: an effective tool to probe the defect states in wide band gap semiconducting materials. Mater. Sci. Semiconduct. Process. 86, 151–156 (2018)

    Article  CAS  Google Scholar 

  39. D. Nayak, R.B. Choudhary, Augmented optical and electrical properties of PMMA-ZnS nanocomposites as emissive layer for OLED applications. Opt. Mater. 91, 470–481 (2019)

    Article  CAS  Google Scholar 

  40. A.S. Ahmed et al., Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J. Lumin 131(1), 1–6 (2011)

    Article  CAS  Google Scholar 

  41. H. Shanshool et al., Investigation of energy band gap in polymer/ZnO nanocomposites. J. Mater.  Sci. Mater.  Electron 27(9), 9804–9811 (2016)

    Article  CAS  Google Scholar 

  42. A. Alipour, M. Mansour Lakouraj, H. Tashakkorian, Study of the effect of band gap and photoluminescence on biological properties of polyaniline/CdS QD nanocomposites based on natural polymer. Sci. Rep 11(1), 1–15 (2021)

    Article  Google Scholar 

  43. N. Saltmarsh et al., Spectroscopic characterizations of Er doped LaPO4 submicron phosphors prepared by homogeneous precipitation method. Opt. Mater. 53, 24–29 (2016)

    Article  CAS  Google Scholar 

  44. O. Abdullah et al., Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J. Mater. Sci. Mater. Electron. 26, 5303–5309 (2015)

    Article  CAS  Google Scholar 

  45. O.G. Abdullah, Y.A.K. Salman, S.A. Saleem, In-situ synthesis of PVA/HgS nanocomposite films and tuning optical properties. Phys. Mater. Chem 3(2), 18–24 (2015)

    Google Scholar 

  46. J. Rozra et al., Cu nanoparticles induced structural, optical and electrical modification in PVA. Mater. Chem. Phys. 134, 1121–1126 (2012)

    Article  CAS  Google Scholar 

  47. Y.S. Vidya, B.N. Lakshminarasappa, Preparation, characterization, and luminescence properties of orthorhombic sodium sulphate. Phys. Res. Int. 2013(2013)

  48. D. Kamble et al., Characterization and NO2 gas sensing properties of spray pyrolyzed SnO2 thin films. J. Anal.  Appl.  Pyrolysis 127, 38–46 (2017)

    Article  CAS  Google Scholar 

  49. S. Dey, A.K. Kar, Composition and excitation wavelength dependent photoluminescence color tuning in nanocomposite of PMMA and ZnO nanorods for PLED. J. Alloys Compd. 879, 160450 (2021)

    Article  CAS  Google Scholar 

  50. H. Sahoo, Förster resonance energy transfer – A spectroscopic nanoruler: principle and applications. J. Photochem. Photobiol. C 12(1), 20–30 (2011)

    Article  CAS  Google Scholar 

  51. Y. Wang et al., Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: visible-light-driven photocatalytic activity. Appl. Surf. Sci. 505, 144576 (2019)

    Article  Google Scholar 

  52. S. Kumar, R.B. Choudhary, Influence of MnO2 nanoparticles on the optical properties of polypyrrole matrix. Mater. Sci. Semiconduct. Process 139, 106322 (2022)

    Article  CAS  Google Scholar 

  53. R.B. Choudhary, A. Verma, Augmented structural, optical and electrical properties of CdS decorated PANI/rGO nanohybrids. Opt. Mater. 96, 109310 (2019)

    Article  CAS  Google Scholar 

  54. E.A. Segura González et al., Preparation and characterization of polymer composite materials based on PLA/TiO2 for antibacterial packaging. Polymers 10(12), 1365 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Z. Han et al., Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol. Solid State Sci. 65, 110–115 (2017)

    Article  CAS  Google Scholar 

  56. Q.T.H. Ta, G. Namgung, J.-S. Noh, Facile synthesis of porous metal-doped ZnO/g-C3N4 composites for highly efficient photocatalysts. J. Photochem. Photobiol. A 368, 110–119 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Indian Institute of Technology (Indian School of Mines), Dhanbad, India, for providing financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SK: Conceptualization, Validation of calculations and results, Software, Data curation, Formal analysis, Writing—original draft. RBC: Supervision, Writing—review and editing, Funding acquisition, Project administration, Resources.

Corresponding author

Correspondence to Ram Bilash Choudhary.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Choudhary, R.B. FRET Mechanism of SnO2 Integrated Luminescent g-C3N4 Nanocomposite and Its Robust Chemical, Optical and Thermal States for Emissive Layer Application. J Inorg Organomet Polym 33, 599–610 (2023). https://doi.org/10.1007/s10904-022-02524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02524-5

Keywords

Navigation