Skip to main content
Log in

Facile Preparation of High Performance Low Concentration HCHO Degradation Catalyst from Waste Li-MnO2 Batteries

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The recycling and utilization of lithium-ion batteries has received a lot of attention. The use of recycled waste lithium-manganese batteries to degrade formaldehyde contaminated gas by adsorption is certainly killing two birds with one stone. In this paper, efficient catalysts capable of degrading formaldehyde were obtained using lithium-manganese button batteries being discharged to different levels and then recovering the cathode material by a simple method and labelled as LixMnO2 (x = 0.00; 0.25; 0.50; 0.75; 1.00). The fully discharged cathode material Li1.00-MnO2 degraded formaldehyde at nearly 100% (less than 0.1 ppm) within 24 h at room temperature, which is twice the degradation rate of the undischarged cathode material. The high degradation efficiency is attributed to the continuous doping of Li+ as the discharge proceeds and the conversion of Mn(IV) to Mn(III), so the lattice gap, defects, surface oxygen species and specific surface area of the catalyst increase. And the surface oxygen involved in the degradation of formaldehyde increases. The catalytic activity of the catalyst for formaldehyde gradually increased with the discharge, promoting the catalytic degradation effect. The degradation rate of formaldehyde at low concentrations was close to 100% within 24 h. This study provides an attractive approach for converting lithium battery electrode materials into formaldehyde degradation catalysts to improve the indoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.L. Zou, W.W. Wen, L.L. Wang, Investigation and analysis on the present situation of indoor formaldehyde pollution in residence of Binzhou city, Meteor. Environ. Res. 43, 11–13 (2015)

    Google Scholar 

  2. X. Yang, Y.P. Zhang, D. Chen, W.G. Chen, R. Wang, Eye irritation caused by formaldehyde as an indoor air pollution-A controlled human exposure experiment. Biomed. Environ. Sci. 14, 229–236 (2001)

    CAS  PubMed  Google Scholar 

  3. L. Zhai, J. Zhao, B. Xu, Y. Deng, Z. Xu, Influence of indoor formaldehyde pollution on respiratory system health in the urban area of Shenyang, China. Afr. Health. Sci. 13, 137–143 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. G.Y. Xiao, Z.Y. Zhang, J. Weber, H.P. Ding, H. McIntosh, D. Desrosiers, G. Nong, D.Y. Won, J. Dunford, J. Tunney, K. Darcovish, G. Diaz-Quijada, Trace amount formaldehyde gas detection for indoor air quality monitoring. Instrum. Measurement Technol. Conf. 1–4 (2011). https://doi.org/10.1109/IMTC.2011.5944050

  5. G. Wieslander, D. Norback, E. Bjornsson, C. Janson, G. Boman, Asthma and the indoor environment: the significance of emission of formaldehyde and volatile organic compounds from newly painted indoor surfaces. Int. Arch. Occup. Environ. Health. 69, 115–124 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. Y. Sekine, A. Nishimura, Removal of formaldehyde from indoor air by passive type air-cleaning materials. Atmospheric. Environ. 35, 2001–2007 (2001)

    Article  CAS  Google Scholar 

  7. D.C. Lowe, U. Schmidt, Formaldehyde (HCHO) measurements in the nonurban atmosphere. J. Geophys. Re. 88, 10844–10858 (1983)

    Article  CAS  Google Scholar 

  8. W. Lei, M. Zavala, B.D. Foy, R. Volkamer, M.J. Molina, L.T. Molina, Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area. Atmos. Chem. Phys. Discuss. 9, 2607–2618 (2008)

    Article  Google Scholar 

  9. M. Krzyzanowski, J.J. Quackenboss, M.D. Lebowitz, Chronic respiratory effects of indoor formaldehyde exposure. Environ. Resear. 52, 117–125 (1990)

    Article  CAS  Google Scholar 

  10. D.E. Hun, R.L. Corsi, M.T. Morandi, J.A. Siegel, Formaldehyde in residences: long-term indoor concentrations and influencing factors. Indoor Air 20, 196–203 (2015)

    Article  Google Scholar 

  11. P. Gustafson, L. Barregard, R. Lindahl, G. Sallsten, Formaldehyde levels in Sweden: personal exposure, indoor, and outdoor concentrations. J. Expo. Anal. Environ. Epidemiol. 15, 252–260 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. W.H. Ching, M. Leung, D.Y.C. Leung, Solar photocatalytic degradation of gaseous formaldehyde by sol-gel TiO2 thin film for enhancement of indoor air quality. Sol. Energy 77, 129–135 (2004)

    Article  CAS  Google Scholar 

  13. Y. Song, W.M. Qiao, S.H. Yoon, I. Mochida, Q.G. Guo, L. Liu, Removal of formaldehyde at low concentration using various activated carbon fibers. J. Appl. Polym. Sci. 106, 2151–2157 (2010)

    Article  Google Scholar 

  14. Q.B. Wen, C.T. Li, Z.H. Cai, W. Zhang, H.L. Gao, L.J. Chen, G.M. Zeng, X. Shu, Y.P. Zhao, Study on activated carbon derived from sewage sludge for adsorption of gaseous formaldehyde. Bioresource. Technol. 102, 942–947 (2011)

    Article  CAS  Google Scholar 

  15. H.Q. Rong, Z.Y. Ryu, J.T. Zheng, Y.L. Zhang, Effect of air oxidation of Rayon-based activated carbon fibers on the adsorption behavior for formaldehyde. Carbon 40, 2291–2300 (2002)

    Article  CAS  Google Scholar 

  16. H.M. Liu, X.J. Ye, Z.W. Lian, Y.G. Wen, W.F. Shangguan, Experimental study of photocatalytic oxidation of formaldehyde and its by-products. Res. Chem. Intermed. 32, 9–16 (2006)

    Article  Google Scholar 

  17. T. Noguchi, A. Fujishima, P. Sawunyama, K. Hashimoto, Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ. Sci. Technol. 32, 3831–3833 (1998)

    Article  CAS  Google Scholar 

  18. Y.H. Zhang, G.X. Xiong, N. Yao, W.S. Yang, X.Z. Fu, Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol-gel method. Catal. Today. 68, 89–95 (2001)

    Article  CAS  Google Scholar 

  19. Y.X. Li, G.X. Lu, S.B. Li, F. Yu, Photocatalytic Hydrogen generation by pollutant formaldehyde as electron donor over Pt/TiO2. J. Mol. Catal. (China) 16, 242–246 (2002)

    Google Scholar 

  20. X.Y. Xiao, D.L. Liao, H.P. Zhang, H.Q. Chen, Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation. Front. Chem. Eng. China. 1, 178–183 (2007)

    Article  CAS  Google Scholar 

  21. J. Li, P.F. Fu, P.Y. Zhang, Vacuum ultraviolet photocatalytic degradation of formaldehyde and ozone decomposition by Au/TiO2 nanocomposite film. China. Environ. Sci. 30, 1441–1445 (2010)

    CAS  Google Scholar 

  22. P.F. Fu, P.Y. Zhang, Characterization of Pt-TiO2 film used in three formaldehyde photocatalytic degradation systems: UV254 nm, O3+UV254 nm and UV254+185 nm via X-ray photoelectron spectroscopy. Chinese. J. Catal. 35, 210–218 (2014)

    Article  CAS  Google Scholar 

  23. Y.C. Chang, C.Y. Yan, R.J. Wu, Preparation of Pt@SnO2 core-Shell nanoparticles for photocatalytic degradation of formaldehyde. J. Chinese. Chem. Soc. 61, 345–349 (2014)

    Article  CAS  Google Scholar 

  24. Y. Sekine, Oxidative decomposition of formaldehyde by metal oxides at room temperature. Atmospheric. Environ. 36, 5543–5547 (2002)

    Article  CAS  Google Scholar 

  25. M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, J. Larsen, W.J. Fisk, Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts. Appl. Catal. B: Environ. 107, 34–41 (2011)

    Article  CAS  Google Scholar 

  26. J. Miyawaki, G.H. Lee, J. Yeh, N. Shiratori, T. Shimohara, I. Mochida, S.H. Yoon, Development of carbon-supported hybrid catalyst for clean removal of formaldehyde indoors. Catal. Today. 185, 278–283 (2012)

    Article  CAS  Google Scholar 

  27. Y. Chen, J.H. He, H. Tian, D.H. Wang, Q.W. Yang, Enhanced formaldehyde oxidation on Pt/MnO2 catalysts modified with alkali metal salts. J. Colloid. Interf. Sci. 428, 1–7 (2014)

    Article  CAS  Google Scholar 

  28. S.P. Rong, P.Y. Zhang, Y.J. Yang, Z. Lin, J.L. Wang, F. Liu, MnO2 framework for instantaneous mineralizationof carcinogenic airborne formaldehyde at room temperature. ACS. Catal. 7, 1057–1067 (2017)

    Article  CAS  Google Scholar 

  29. X. Zhang, C.H. Zhang, Q.X. Lin, B.G. Cheng, X.X. Liu, P. Feng, J.L. Ren, Preparation of lignocellulose-based activated carbon paper as a manganese dioxide carrier for adsorption and in-situ catalytic degradation of formaldehyde. Front. Chem. 7, 1–12 (2019)

    Article  CAS  Google Scholar 

  30. S. Elbasuney, M.A. Elsayed, S.F. Mostafa, W.F. Khalil, MnO2 nanoparticles supported on porous Al2O3 substrate for wastewater treatment: synergy of adsorption, oxidation, and photocatalysis. J. Inorg. Organomet. Polym. Mater. 29, 827–840 (2019)

    Article  CAS  Google Scholar 

  31. Z.Y. Lu, H.T. Wang, D.S. Kong, K. Yan, P.C. Hsu, G.Y. Zheng, H.B. Yao, Z. Liang, X.M. Sun, Y. Cui, Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345–4351 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. H.T. Wang, Z.Y. Lu, S.C. Xu, D.S. Kong, J.J. Cha, G.Y. Zheng, P.C. Hsu, K. Yan, D. Bradshaw, F.B. Prinz, Y. Cui, Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl. Acad. Sci. USA 110, 19701–19706 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. E.J. Yoo, J. Kim, E. Hosono, H.S. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano. Lett. 8, 2277–2282 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. M.A. Py, R.R. Haering, Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983)

    Article  CAS  Google Scholar 

  35. Y.F. Yuan, A. Nie, G.M. Odegard, R. Xu, D.H. Zhou, S. Santhanagopalan, K. He, H. Asayesh-Ardakani, D.D. Meng, R.F. Klie, C. Johnson, J. Lu, R. Shahbazian-Yassar, Asynchronous crystal cell expansion during lithiation of K+-stabilized α-MnO2. Nano. Lett. 15, 2998–3007 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. W.M. Dose, J. Lehr, S.W. Donne, Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide. Mater. Res. Bull. 47, 1827–1834 (2012)

    Article  CAS  Google Scholar 

  37. M. Fekete, R.K. Hocking, S.L.Y. Chang, C. Italiano, A.F. Patti, F. Arena, L. Spiccia, Highly active screen-printed electrocatalysts for water oxidation based on β-manganese oxide. Energy Environ. Sci. 6, 2222–2232 (2013)

    Article  CAS  Google Scholar 

  38. D.M. Robinson, Y.B. Go, M. Mui, G. Gardner, Z.J. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G.C. Dismukes, Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural rrequirements for catalysis. J. Am. Chem. Soc. 135, 3494–3501 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer, H. Dau, Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci. 5, 7081–7089 (2012)

    Article  CAS  Google Scholar 

  40. Y.Y. Xin, X.M. Guo, S. Chen, J. Wang, F. Wu, B.P. Xin, Bioleaching of valuable metals Li Co, Ni and Mn from spent electric vehicle Li-ion batteries for the purpose of recovery. J. Clean. Prod. 116, 249–258 (2016)

    Article  CAS  Google Scholar 

  41. J.F. Paulino, N.G. Busnardo, J.C. Afonso, Recovery of valuable elements from spent Li-batteries. J. Hazard. Mater. 150, 843–849 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. G.P. Nayaka, J. Manjanna, K.V. Pai, R. Vadavi, S.J. Keny, V.S. Tripathi, Recovery of valuable metal ions from the spent lithium-ion battery using aqueous mixture of mild organic acids as alternative to mineral acids. Hydrometallurgy 151, 73–77 (2015)

    Article  CAS  Google Scholar 

  43. Y. Yang, G.Y. Huang, S.M. Xu, Y.H. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy 165, 390–396 (2016)

    Article  CAS  Google Scholar 

  44. W.F. Gao, X.H. Zhang, X.H. Zheng, X. Lin, H.B. Cao, Y. Zhang, Z.H.I. Sun, Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process. Environ. Sci. Technol. 51, 1662–1669 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. K. Huang, J. Li, Z.M. Xu, A novel process for recovering valuable metals from waste nickel- cadmium batteries. Environ. Sci. Technol. 43, 8974–8978 (2009)

    Article  CAS  PubMed  Google Scholar 

  46. H.B. Tan, S.P. Wang, Kinetic behavior of manganese dioxide in Li/MnO2 primary batteries investigated using electrochemical impedance spectroscopy under nonequilibrium state. J. Electrochem. Soc. 161, A1927–A1932 (2014)

    Article  Google Scholar 

  47. H.B. Tan, S.P. Wang, X.R. Lei, New insights for the cyclic performance of Li/MnO2 batteries using a simple electrochemical process. J. Electrochem. Soc. 162, A448–A452 (2015)

    Article  CAS  Google Scholar 

  48. T. Ohzuku, M. Kitagawa, T. Hirai, Electrochemistry of manganese dioxide in lithium nonaqueous cell I. X-ray diffractional study on the reduction of electrolytic manganese dioxide. J. Electrochem. Soc. 136, 3169–3174 (1989)

    Article  CAS  Google Scholar 

  49. A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. ChemInform 27, 499–500 (1996)

    Google Scholar 

  50. A.D. Robertson, P.G. Bruce, Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15, 1984–1992 (2003)

    Article  CAS  Google Scholar 

  51. D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H.L. Peng, R.A. Huggins, Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Lett. 8, 3948–3952 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. T. Ohzuku, M. Kitagawa, T. Hirai, Electrochemistry of manganese dioxide in lithium nonaqueous cell III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J. Electrochem. Soc. 137, 769–775 (1990)

    Article  CAS  Google Scholar 

  53. Y. Shao-Horn, S.A. Hackney, B.C. Cornilsen, Structural characterization of heat-treated electrolytic manganese dioxide and topotactic transformation of dischargeproducts in the Li-MnO2 cells. J. Electrochem. Soc. 144, 3147–3153 (1997)

    Article  CAS  Google Scholar 

  54. Y.X. Hu, T.R. Zhang, F.Y. Cheng, Q. Zhao, X.P. Han, J. Chen, Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries. Angew. Chem. 54, 4338–4343 (2015)

    Article  CAS  Google Scholar 

  55. L. Trahey, N.K. Karan, M.K.Y. Chan, J. Lu, Y. Ren, J. Greeley, M. Balasubramanian, A.K. Burrell, L.A. Curtiss, M.M. Thackeray, Synthesis, characterization, and structural modeling of high-capacity, dual functioning MnO2 electrode/electrocatalysts for Li-O2 cells. Adv. Energy Mater. 3, 75–84 (2013)

    Article  CAS  Google Scholar 

  56. X.B. Luo, K. Zhang, J.M. Luo, S.L. Luo, J. Crittenden, Capturing lithium from wastewater using a fixed bed packed with 3-D MnO2 ion cages. Environ. Sci. Technol. 50, 13002–13012 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. Z.B. Lei, F.H. Shi, L. Lu, Incorporation of MnO2-coated carbon nanotubes between graphene sheets as supercapacitor electrode. ACS Appl. Mater. Inter. 4, 1058–1064 (2012)

    Article  CAS  Google Scholar 

  58. W.F. Wei, X.W. Cui, W.X. Chen, D.G. Ivey, Electrochemical cyclability mechanism for MnO2 electrodes utilized as electrochemical supercapacitors. J. Power Sources. 186, 543–550 (2009)

    Article  CAS  Google Scholar 

  59. V.R. Galakhov, M. Demeter, S. Bartkowski, M. Neumann, N.A. Ovechkina, E.Z. Kurmaev, N.I. Lobachevskaya, Y.M. Mukovskii, J. Mitchell, D. Ederer, Mn 3s exchange splitting in mixed-valence manganites. Phys. Rev. B 65, 113102 (2002)

    Article  Google Scholar 

  60. W.B. Yan, T. Ayvazian, J.Y. Kim, Y. Liu, K.C. Donavan, W.D. Xing, Y.A. Yang, J.C. Hemminger, R.M. Penner, Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. ACS Nano 5, 8275–8287 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. V.P. Santos, O.S.G.P. Soares, J.J.W. Bakker, M.F.R. Pereira, J.J.M. Órfão, J. Gascon, F. Kapteijn, J.L. Figueiredo, Structural and chemical disorder of cryptomelane promoted by alkali doping: Influence on catalytic properties. J. Catal. 293, 165–174 (2012)

    Article  CAS  Google Scholar 

  62. S.C. Kim, W.G. Shim, Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B: Environ. 98, 180–185 (2010)

    Article  CAS  Google Scholar 

  63. L. Liu, J. Li, H. Zhang, L. Li, P. Zhou, X. Meng, M. Guo, J. Jia, T. Sun, In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene. J. Hazard. Mater 362, 178–186 (2019)

    Article  CAS  PubMed  Google Scholar 

  64. W.J. Qiang, Q. Huang, J.H. Shen, Q.F. Ke, J.Y. Lv, Y.P. Guo, Copper oxide and manganese dioxide nanoparticles on corrugated glass-fiber supporters promote thermocatalytic oxidation of formaldehyde. J. Clean. Prod. 368, 1–10 (2022)

    Article  Google Scholar 

  65. F. Wang, H.X. Dai, J.G. Deng, G.M. Bai, K.M. Ji, Y.X. Liu, Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. Environ. Sci. Technol. 46, 4034–4041 (2012)

    Article  CAS  PubMed  Google Scholar 

  66. A.S. Poyraz, J.P. Huang, S.B. Cheng, D.C. Bock, L.J. Wu, Y.M. Zhu, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, Effective recycling of manganese oxide cathodes for lithium based batteries. Green Chem. 18, 3414–3421 (2016)

    Article  CAS  Google Scholar 

  67. Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem. Mater. 7, 148–153 (1995)

    Article  CAS  Google Scholar 

  68. L. Zhang, L. Chen, Y. Li, Y. Peng, F. Chen, L. Wang, C.B. Zhang, X.J. Meng, H. He, F.S. Xiao, Complete oxidation of formaldehyde at room temperature over an Al-rich Beta zeolite supported platinum catalyst. Appl. Catal. B Environ. 219, 200–208 (2017)

    Article  CAS  Google Scholar 

  69. B. Klápstě, J. Vondrák, J. Velická, MnOx/C composites as electrode materials II: Reduction of oxygen on bifunctional catalysts based on manganese oxides. Electrochim. Acta. 47, 2365–2369 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the National Natural Science Foundation of China (and 21103154), Natural Science Foundation of Zhejiang Province (LY16B030006) and National Training Program of Innovation and Entrepreneurship for Undergraduates (202110356024).

Funding

National Natural Science Foundation of China (21103154), Natural Science Foundation of Zhejiang Province (LY16B030006) and National Training Program of Innovation and Entrepreneurship for Undergraduates (202110356024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingfeng Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Yu, T., Dai, Z. et al. Facile Preparation of High Performance Low Concentration HCHO Degradation Catalyst from Waste Li-MnO2 Batteries. J Inorg Organomet Polym 33, 451–461 (2023). https://doi.org/10.1007/s10904-022-02511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02511-w

Keywords

Navigation