Skip to main content
Log in

Effects of Erbium Incorporation on Structural, Surface Morphology, and Degradation of Methylene Blue Dye of Magnesium Oxide Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This paper reports the chemical synthesis of MgO and Er-doped MgO nanoparticles (NPs) by the sol–gel method. Their microstructural, optical characterization and the evaluation of their photocatalytic activity are presented. The synthesized NPs were characterized by means of X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Environmental Scanning Electron Microscopy (ESEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDX), UV–Visible and Photoluminescence (PL) spectroscopy. The effective synthesis of cubic MgO compound is attested by XRD, FTIR and electron diffraction in TEM. Er2O3 cubic secondary phase is found in the 2 and 3 wt% Er-doped MgO samples. The average size of the roundish cuboid-shaped crystallites decreases from 50 to 32 nm upon the incorporation of the rare earth element (TEM, XRD). Concomitantly, the size of flakes in which the NPs do agglomerate follows the same trend (ESEM). UV–Visible results show that the calculated band-gap energy of the NPs was in the 5.23 to 5.35 eV range. PL analysis showed that all samples have visible emissions owing to the formation of defects in the MgO band-gap. The photocatalytic activity against methylene blue dye was evaluated under UV light irradiation. The photocatalytic results showed an improvement in degradation efficiency with the addition of erbium in samples, with a maximal MB dye removal for the 3 wt% Er-doped MgO sample after 90 min irradiation. The performance is ascribed to a higher separation of the photo-generated (electron–hole) and larger surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. F. Ciesielczyk, W. Szczekocka, K. Siwińska-Stefańska, A. Piasecki, D. Paukszta, T. Jesionowski, Evaluation of the photocatalytic ability of a sol–gel-derived MgO–ZrO2 oxide material. Open Chem. 15, 7–18 (2017)

    Article  CAS  Google Scholar 

  2. N. Afifah, S. Adriani, N.F. Djaja, R. Saleh, Photocatalytic degradation of methylene blue and methyl orange with Fe-doped ZnO nanoparticles modified with natural zeolite and montmorillonite: comparative study. Adv. Mater. Res. 1123, 295–302 (2015)

    Article  Google Scholar 

  3. X. Tang, R. Tang, S. Xiong, J. Zheng, L. Li, Z. Zhou, D. Gong, Y. Deng, L. Su, C. Liao, Application of natural minerals in photocatalytic degradation of organic pollutants: a review. Sci. Total Environ. 812, 152434 (2022)

    Article  CAS  Google Scholar 

  4. A. Mahana, S.K. Mehta, Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. Environ. Sci. Pollut. Res. 28, 28234–28250 (2021)

    Article  CAS  Google Scholar 

  5. V. Beena, S. Ajitha, S.L. Rayar et al., Enhanced photocatalytic and antibacterial activities of ZnSe nanoparticles. J. Inorg. Organomet. Polym. Mater. 31, 4390–4401 (2021)

    Article  CAS  Google Scholar 

  6. R. Malik, V.K. Tomer, N. Joshi, T. Dankwort, L. Lin, L. Kienle, Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl. Mater. Interfaces 40, 34087–34097 (2018)

    Article  Google Scholar 

  7. N. Badar, N.F. Chayed, R. Roshidah, N. Kamarudin, N. Kamarulzaman, Band gap energies of magnesium oxide nanomaterials synthesized by the sol–gel method. Adv. Mater. Res. 545, 157–160 (2012)

    Article  CAS  Google Scholar 

  8. M.R. Anilkumar, H.P. Nagaswarupa, K.S. Anantharaju, K. Gurushantha, C. Pratapkumar, S.C. Prashantha, T.R. Shashishekar et al., Banyan latex: a facile fuel for the multifunctional properties of MgO nanoparticles prepared via auto ignited combustion route. Mater. Res. Express. 2, 095004 (2015)

    Article  Google Scholar 

  9. P. Maiti, P.S. Das, M. Bhattacharya, S. Mukherjee, B. Saha, A.K. Mullick, A.K. Mukhopadhyay, Transparent Al3+ doped MgO thin films for functional applications. Mater. Res. Express. 4, 086405 (2017)

    Article  Google Scholar 

  10. M. Mirhosseini, Evaluation of antibacterial effect of magnesium oxide nanoparticles with nisin and heat in milk. Nanomed. J. 3, 135–142 (2016)

    CAS  Google Scholar 

  11. S. Bhatia, N. Verma, R.K. Bedi, Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red-31 dye. Opt. Mater. 62, 392–398 (2016)

    Article  CAS  Google Scholar 

  12. T. AlAbdulaal, M. AlShadidi, M. Hussien, V. Ganesh, A.F. Bouzidi, S. Rafique, H. Algarni, H. Zahran, M. Abdel-Wahab, I. Yahia, Multifunctional and smart Er2O3–ZnO nanocomposites for electronic ceramic varistors and visible light degradation of wastewater treatment. Environ. Sci. Pollut. Res. 29, 19109–19131 (2022)

    Article  CAS  Google Scholar 

  13. R.V. Shanthi, R. Kayalvizhi, M.J. Abel, K. Neyvasagam, Optical, structural and photocatalytic properties of rare earth element Gd3+ doped MgO nanocrystals. Chem. Phys. Lett. 792, 139384 (2022)

    Article  Google Scholar 

  14. V.T. Srisuvetha, S.L. Rayar, G. Shanthi, Role of cerium (Ce) dopant on structural, optical and photocatalytic properties of MgO nanoparticles by wet chemical route. J. Mater. Sci. 31, 2799–2808 (2020)

    CAS  Google Scholar 

  15. P.K. Labhane, G.H. Sonawane, S.H. Sonawane, Influence of rare-earth metal on the zinc oxide nanostructures: application in the photocatalytic degradation of methylene blue and p-nitro phenol. Green Process. Synth. 7, 360–371 (2018)

    Article  CAS  Google Scholar 

  16. B. Poornaprakash, U. Chalapathi, M. Kumar, K. Subramanyam, S.P. Vattikuti, M.S.P. Reddy, S.H. Park, Enhanced photocatalytic activity and hydrogen evolution of CdS nanoparticles through Er doping. Ceram. Int. 46, 21728–21735 (2020)

    Article  CAS  Google Scholar 

  17. O. Singh, M. Palsingh, N. Kohli, R. Chand Singh, Effect of pH on the morphology and gas sensing properties of ZnO nanostructures. Sens. Actuators B 443, 166–167 (2012)

    Google Scholar 

  18. K.D. Salman, H.H. Abbas, H.A. Aljawad, Synthesis and characterization of MgO nanoparticle via microwave and sol–gel methods. J. Phys. Conf. Ser. 1973, 012104 (2021)

    Article  CAS  Google Scholar 

  19. N. Khanna, A.R. Kumar, Preparation and characterization of MgO nanoparticles by sol–gel method. Adv. Sci. Lett. 24, 5708–5711 (2018)

    Article  Google Scholar 

  20. X. Zhang, Y. Zheng, H. Yang, Q. Wang, Z. Zhang, Controlled synthesis of mesocrystal magnesium oxide parallelogram and its catalytic performance. Cryst. Eng. Comm. 17, 2642–2650 (2015)

    Article  CAS  Google Scholar 

  21. R. Sathyamoorthy, K. Mageshwari, S.S. Mali, S. Priyadharshini, P.S. Patil, Effect of organic capping agent on the photocatalytic activity of MgO nanoflakes obtained by thermal decomposition route. Ceram. Int. 39, 323–330 (2013)

    Article  CAS  Google Scholar 

  22. W.B. Wang, Y. Yang, A. Yanguas-Gil, N.N. Chang, G.S. Girolami, J.R. Abelson, Highly conformal magnesium oxide thin films by low-temperature chemical vapor deposition from Mg (H3BNMe2BH3)2 and water. Appl. Phys. Lett. 102, 101605 (2013)

    Article  Google Scholar 

  23. M.A. Alavi, A. Morsali, Syntheses and characterization of Mg (OH)2 and MgO nanostructures by ultrasonic method. Ultrason Sonochem. 17, 441–446 (2010)

    Article  CAS  Google Scholar 

  24. Z.X. Tang, L.E. Shi, Preparation of nano-MgO using ultrasonic method and its characteristics. Eclet. Quim. 33, 15–20 (2008)

    Article  CAS  Google Scholar 

  25. K.D. Bhatte, D.N. Sawant, K.M. Deshmukh, B.M. Bhanage, Additive free microwave assisted synthesis of nanocrystalline Mg(OH)2 and MgO. Particuology. 10, 384–387 (2012)

    Article  CAS  Google Scholar 

  26. T.H. Duong, T.N. Nguyen, H.T. Oanh et al., Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. J. Chem. 19, 1 (2009)

    Google Scholar 

  27. S.K. Moorthy, C.H. Ashok, K. VenkateswaraRao, C. Viswanathan, Synthesis and characterization of MgO nanoparticles by neem leaves through green method. Mater. Today: Proc. 2, 4360–4368 (2015)

    Google Scholar 

  28. J. Suresh, R. Yuvakkumar, M. Sundrarajan, S.I. Hong, Green synthesis of magnesium oxide nanoparticles. Adv. Mater. Res. 952, 141–144 (2014)

    Article  Google Scholar 

  29. M. Mohsen, H. Tantawy, I. Naeem, M. Awaad, O. Abuzalat, A. Baraka, Activation of cadmium-imidazole buffering coordination polymer by sulfur-doping for the enhancement of photocatalytic degradation of cationic and anionic dyes under visible light. J. Inorg. Organomet. Polym. Mater. 32, 1–14 (2022)

    Article  Google Scholar 

  30. I. Ameur, B. Boudine, M. Laidoudi, M. Khennoucha, V. Brien, D. Horwat, M. Sebais, O. Halimi, Influence of magnesium doping on microstructure, optical and photocatalytic activity of zinc oxide thin films synthesis by sol–gel route. Appl. Phys. A 127, 1–14 (2021)

    Google Scholar 

  31. B. Rahal, B. Boudine, Y. Larbah et al., Influence of low Cd-doping concentration (0.5 and 3 wt%) and different substrate types (glass and silicon) on the properties of dip coated nanostructured ZnO semiconductors thin films. J. Inorg. Organomet. Polym. Mater. 31, 4001–4017 (2021)

    Article  CAS  Google Scholar 

  32. P.B. Devaraja, D.N. Avadhani, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, B.D. Prasad, Luminescence properties of MgO: Fe3+ nanopowders for WLEDs under NUV excitation prepared via propellant combustion route. J. Radiat. Res. Appl. Sci. 8, 362–373 (2015)

    Article  Google Scholar 

  33. L.X. Li, D. Xu, X.Q. Li, W.C. Liu, Y. Jia, Excellent fluoride removal properties of porous hollow MgO microspheres. New J Chem. 38, 5445–5452 (2014)

    Article  CAS  Google Scholar 

  34. B. Saravanakumar, S. Muthulakshmi, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Surfactant effect on synthesis and electrochemical properties of nickel-doped magnesium oxide (Ni–MgO) for supercapacitor applications. Appl. Phys. A 123, 1–9 (2017)

    Article  CAS  Google Scholar 

  35. S. Kianipour, F.S. Razavi, M. Hajizadeh-Oghaz, W.K. Abdulsahib, M.A. Mahdi, L.S. Jasim, M. Salavati-Niasari, The synthesis of the P/N-type NdCoO3/g-C3N4 nano-heterojunction as a high-performance photocatalyst for the enhanced photocatalytic degradation of pollutants under visible-light irradiation. Arab. J. Chem. 15, 103840 (2022)

    Article  CAS  Google Scholar 

  36. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O909 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104, 2952–2965 (2021)

    Article  CAS  Google Scholar 

  37. H. Ali, A.M. Ismail, Honeycomb-like V2O5 based films: synthesis, structural, thermal, and optical properties for environmental applications. J. Inorg. Organomet. Polym. Mater. 87, 1–18 (2022)

    Google Scholar 

  38. R. Boulkroune, M. Sebais, Y. Messai, R. Bourzami, M. Schmutz, C. Blanck, O. Halimi, B. Boudine, Hydrothermal synthesis of strontium-doped ZnS nanoparticles: structural, electronic and photocatalytic investigations. Bull. Mater. Sci. 42, 1–8 (2019)

    Article  CAS  Google Scholar 

  39. L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018)

    Article  CAS  Google Scholar 

  40. Y. Zheng et al., Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution. RSC Adv. 9, 7338–7348 (2019)

    Article  CAS  Google Scholar 

  41. K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Template-free synthesis of MgO nanoparticles for effective photocatalytic applications. Powder technol. 249, 456–462 (2013)

    Article  CAS  Google Scholar 

  42. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf. Interfaces 16, 120–126 (2019)

    Article  CAS  Google Scholar 

  43. S. Klubnuan, P. Amornpitoksuk, S. Suwanboon, Structural, optical and photocatalytic properties of MgO/ZnO nanocomposites prepared by a hydrothermal method. Mater. Sci. Semicond. Process. 39, 515–520 (2015)

    Article  CAS  Google Scholar 

  44. M.R. Anilkumar, H.P. Nagaswarupa, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, C. Shivakuamra, K. Gurushantha, Bio-inspired route for the synthesis of spherical shaped MgO: Fe3+ nanoparticles: Structural, photoluminescence and photocatalytic investigation. Spectrochim. Acta A 149, 703–713 (2015)

    Article  CAS  Google Scholar 

  45. Z.M. Alaizeri, H.A. Alhadlaq, S. Aldawood, M.J. Akhtar, M.S. Amer, M. Ahamed, Facile synthesis, characterization, photocatalytic activity, and cytotoxicity of Ag-doped MgO nanoparticles. Nanomaterials 11, 2915 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank Mr Badis Rahal and Mrs Sylvie Migot for the help in XRD, ESEM, TEM and EDX measurements.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the study. IA conducted the experiments. All authors contributed to manuscript revisions. All authors approved the final version of the manuscript and agree to be held accountable for the content therein. Conceptualization: BB and IA; Methodology: BB and IA; Formal analysis and investigation: All authors; Writing-original draft preparation: All authors; Writing—review and editing: All authors; Funding acquisition: All authors; Resources: All authors; Supervision: BB.

Corresponding author

Correspondence to Imene Ameur.

Ethics declarations

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameur, I., Khantoul, A.r., Boudine, B. et al. Effects of Erbium Incorporation on Structural, Surface Morphology, and Degradation of Methylene Blue Dye of Magnesium Oxide Nanoparticles. J Inorg Organomet Polym 33, 30–46 (2023). https://doi.org/10.1007/s10904-022-02482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02482-y

Keywords

Navigation