Skip to main content
Log in

Sol–Gel Synthesis and Electrochemical Sensing Properties of Brownmillerite Calcium Ferrite–Ca2Fe2O5 Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nanocrystalline brownmillerite Ca2Fe2O5 (CFO) has been prepared by sol–gel technique and the samples are presented as CFO1 and CFO2, for the products obtained at calcination temperatures of 600, and 800 ℃ respectively. The particles were characterized using optical and structural techniques, and were further evaluated for possible application in electrocatalysis. The diffraction patterns of the nanoparticles revealed a monocrystalline phase, consistent with the orthorhombic structure of brownmillerite Ca2Fe2O5. Absorption spectra showed a sharp absorption edge around 330 nm for CFO1, and a broad absorption band in the visible region (400–800 nm) for the CFO2. The external morphology presented porous flake-like agglomerates, with the internal morphology revealing a pseudo-spherical shape in both samples. The electrochemical studies of the nanoparticles including cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy were carried out. The modified electrodes showed enhanced electroactive properties relative to the bare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Rostrup-Nielsen, G. Ertl, H. Knozinger, in Handbook of Heterogeneous Catalysis. ed. by G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp, pp. 2882–2905 (2008)

  2. F. Delogu, G. Mulas, Experimental and Theoretical Studies in Modern Mecanochemistry (Transworld Research Network, Trivandrum, 2010)

    Google Scholar 

  3. L. Berchmans, M. Myndyk, K. Da Silva, A. Feldhoff, J. Šubrt, P. Heitjans, K. Becker, V. Šepelák, A rapid one-step mechanosynthesis and characterization of nanocrystalline CaFe2O4 with orthorhombic structure. J. Alloy Compd. 500(1), 68–73 (2010)

    Article  CAS  Google Scholar 

  4. R.A. Buyanov, V.V. Molchanov, V.V. Boldyrev, Mechanochemical activation as a tool of increasing catalytic activity. Catal. Today 144(3–4), 212–218 (2009)

    Article  CAS  Google Scholar 

  5. C.A. Martínez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B 87(3–4), 105–145 (2009)

    Article  Google Scholar 

  6. M. Vanags, A. Spule, K. Gruškeviča, S. Vihodceva, A. Tamm, S. Vlassov, A. Šutka, Sol-gel auto-combustion synthesis of Ca2Fe2O5 brownmillerite nanopowders and thin films for advanced oxidation photoelectrochemical water treatment in visible light. J. Environ. Chem. Eng. 7(4), 103224 (2019)

    Article  CAS  Google Scholar 

  7. M. Vanags, L. Mežule, A. Spule, J. Kostjukovs, K. Šmits, A. Tamm, T. Juhna, S. Vihodceva, T. Käämbre, L. Baumane, Rapid catalytic water disinfection from earth abundant Ca2Fe2O5 brownmillerite. Adv. Sustain. Syst. 5(12), 2100130 (2021)

    Article  CAS  Google Scholar 

  8. M.H. Kryder, E.C. Gage, T.W. McDaniel, W.A. Challener, R.E. Rottmayer, G. Ju, Y.-T. Hsia, M.F. Erden, Heat assisted magnetic recording. Proc. IEEE 96(11), 1810–1835 (2008)

    Article  CAS  Google Scholar 

  9. P. Tartaj, Nanomagnets-From fundamental physics to biomedicine. Curr. Nanosci. 2(1), 43–53 (2006)

    Article  CAS  Google Scholar 

  10. N.-o Ikenaga, Y. Ohgaito, T. Suzuki, H2S absorption behavior of calcium ferrite prepared in the presence of coal. Energy Fuels 19(1), 170–179 (2005)

    Article  CAS  Google Scholar 

  11. D. Hirabayashi, Y. Sakai, T. Yoshikawa, K. Mochizuki, Y. Kojima, K. Suzuki, K. Ohshita, Y. Watanabe, Mössbauer characterization of calcium–ferrite oxides prepared by calcining Fe2O3 and CaO. Hyperfine Interact. 167(1), 809–813 (2006)

    Article  CAS  Google Scholar 

  12. D. Hirabayashi, T. Yoshikawa, K. Mochizuki, K. Suzuki, Y. Sakai, Formation of brownmillerite type calcium ferrite (Ca2Fe2O5) and catalytic properties in propylene combustion. Catal. Lett. 110(1), 155–160 (2006)

    Article  CAS  Google Scholar 

  13. S. Hana, F. Abdel-Mohsen, H. Emira, Preparation and characterization of magnesium and calcium ferrite pigments. Interceramics 54(2), 106–110 (2005)

    CAS  Google Scholar 

  14. N. Sharma, K. Shaju, G.S. Rao, B. Chowdari, Iron–tin oxides with CaFe2O4 structure as anodes for Li-ion batteries. J. Power Sources 124(1), 204–212 (2003)

    Article  CAS  Google Scholar 

  15. R.K. Selvan, C. Augustin, V. Šepelák, L.J. Berchmans, C. Sanjeeviraja, A. Gedanken, Synthesis and characterization of CuFe2O4/CeO2 nanocomposites. Mater. Chem. Phys. 112(2), 373–380 (2008)

    Article  CAS  Google Scholar 

  16. C. Augustin, R.K. Selvan, R. Nagaraj, L.J. Berchmans, Effect of La3+ substitution on the structural, electrical and electrochemical properties of strontium ferrite by citrate combustion method. Mater. Chem. Phys. 89(2–3), 406–411 (2005)

    Article  CAS  Google Scholar 

  17. L.J. Berchmans, R. Sindhu, S. Angappan, C. Augustin, Effect of antimony substitution on structural and electrical properties of LaFeO3. J. Mater. Process. Technol. 207(1–3), 301–306 (2008)

    Article  Google Scholar 

  18. V. Šepelák, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, K.D. Becker, Nanocrystalline nickel ferrite, NiFe2O4: mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. J. Phys. Chem. C 111(13), 5026–5033 (2007)

    Article  Google Scholar 

  19. V.V. Boldyrev, Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75(3), 177 (2006)

    Article  CAS  Google Scholar 

  20. T.L. Phan, N. Tran, D.H. Kim, P.T. Tho, B.T. Huy, T.N. Dang, D.S. Yang, B. Lee, Electronic structure and magnetic properties of Al-doped Ca2Fe2O5 brownmillerite compounds. J. Am. Ceram. Soc. 101(5), 2181–2189 (2018)

    Article  CAS  Google Scholar 

  21. C.P. Jijil, M. Lokanathan, S. Chithiravel, C. Nayak, D. Bhattacharyya, S.N. Jha, P. Babu, B. Kakade, R.N. Devi, Nitrogen doping in oxygen-deficient Ca2Fe2O5: a strategy for efficient oxygen reduction oxide catalysts. ACS Appl. Mater. Interfaces 8(50), 34387–34395 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. J. Young, J.M. Rondinelli, Crystal structure and electronic properties of bulk and thin film brownmillerite oxides. Phys. Rev. B 92(17), 174111 (2015)

    Article  Google Scholar 

  23. B.F. Amorim, M. Morales, F. Bohn, A.S. Carriço, S. De Medeiros, A.L. Dantas, Synthesis of stoichiometric Ca2Fe2O5 nanoparticles by high-energy ball milling and thermal annealing. Physica B 488, 43–48 (2016)

    Article  CAS  Google Scholar 

  24. S. Dhankhar, K. Gupta, G. Bhalerao, N. Shukla, M. Chandran, B. Francis, B. Tiwari, K. Baskar, S. Singh, Anomalous room temperature magnetoresistance in brownmillerite Ca2Fe2O5. RSC Adv. 5(112), 92549–92553 (2015)

    Article  CAS  Google Scholar 

  25. J. Malveiro, T. Ramos, L. Ferreira, J. Waerenborgh, M. Nunes, M. Godinho, M. Carvalho, Magnesium doping on brownmillerite Ca2FeAlO5. J. Solid State Chem. 180(6), 1863–1874 (2007)

    Article  CAS  Google Scholar 

  26. H. Jeen, W.S. Choi, J.W. Freeland, H. Ohta, C.U. Jung, H.N. Lee, Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3–δ. Adv. Mater. 25(27), 3651–3656 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. M. Ismail, W. Liu, M.S. Chan, M.T. Dunstan, S.A. Scott, Synthesis, application, and carbonation behavior of Ca2Fe2O5 for chemical looping H2 production. Energy Fuels 30(8), 6220–6232 (2016)

    Article  CAS  Google Scholar 

  28. P. Marchukov, R. Geick, C. Brotzeller, W. Treutmann, E. Rudashevsky, A. Balbashov, Static magnetic properties of the many-sublattice antiferromagnet Ca2Fe2O5. Phys. Rev. B 48(18), 13538 (1993)

    Article  CAS  Google Scholar 

  29. H. Zhou, J. Goodenough, Rotation of magnetocrystalline easy axis in Ca2Fe2O5. Solid State Sci. 7(6), 656–659 (2005)

    Article  CAS  Google Scholar 

  30. K. Gupta, S. Singh, M.R. Rao, Fast, reversible CO2 capture in nanostructured Brownmillerite CaFeO2.5. Nano Energy 11, 146–153 (2015)

    Article  CAS  Google Scholar 

  31. E.C. Okpara, S.C. Nde, O.E. Fayemi, E.E. Ebenso, Electrochemical characterization and detection of lead in water using SPCE modified with BiONPs/PANI. Nanomaterials 11(5), 1294 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Bigham, J.S. Dooley, N.G. Ternan, W.J. Snelling, M.H. Castelán, J. Davis, Assessing microbial water quality: electroanalytical approaches to the detection of coliforms. TrAC Trends Anal. Chem. 121, 115670 (2019)

    Article  CAS  Google Scholar 

  33. K. Xu, Q. Chen, Y. Zhao, C. Ge, S. Lin, J. Liao, Cost-effective, wireless, and portable smartphone-based electrochemical system for on-site monitoring and spatial mapping of the nitrite contamination in water. Sens. Actuators B 319, 128221 (2020)

    Article  CAS  Google Scholar 

  34. T.P. Lambrou, C.C. Anastasiou, C.G. Panayiotou, M.M. Polycarpou, A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems. IEEE Sens. J. 14(8), 2765–2772 (2014)

    Article  Google Scholar 

  35. V. Somerset, E. Iwuoha, L. Hernandez, Stripping voltammetric measurement of trace metal ions at screen-printed carbon and carbon paste electrodes. Procedia Chem. 1(1), 1279–1282 (2009)

    Article  CAS  Google Scholar 

  36. A. Waheed, M. Mansha, N. Ullah, Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC Trends Anal. Chem. 105, 37–51 (2018)

    Article  CAS  Google Scholar 

  37. G. Aragay, J. Pons, A. Merkoçi, Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J. Mater. Chem. 21(12), 4326–4331 (2011)

    Article  CAS  Google Scholar 

  38. A.K. Das, R. Govindaraj, A. Srinivasan, Structural and magnetic properties of sol-gel derived CaFe2O4 nanoparticles. J. Magn. Magn. Mater. 451, 526–531 (2018)

    Article  CAS  Google Scholar 

  39. E.C. Okpara, O.E. Ogunjinmi, O.A. Oyewo, O.E. Fayemi, D.C. Onwudiwe, Green synthesis of copper oxide nanoparticles using extracts of Solanum macrocarpon fruit and their redox responses on SPAu Electrode. Heliyon 7, e08571 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. E.C. Okpara, O.E. Fayemi, E.-S.M. Sherif, H. Junaedi, E.E. Ebenso, Green wastes mediated zinc oxide nanoparticles: synthesis, characterization and electrochemical studies. Materials 13(19), 4241 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  41. J. Gonzalez-Calbet, M. Vallet-Regi, M. Alario-Franco, Microdomains in the reduction of Ca2LaFe3O8+z. J. Solid State Chem. 60(3), 320–331 (1985)

    Article  CAS  Google Scholar 

  42. T.C. Gibb, A.J. Herod, D.C. Munro, N. Peng, Synthesis under high pressure and characterisation by Mössbauer spectroscopy of non-stoichiometric Ca2Fe2O512. J. Mater. Chem. 4(9), 1451–1455 (1994)

    Article  CAS  Google Scholar 

  43. M. Zhang, Z. Jin, J. Zhang, X. Guo, J. Yang, W. Li, X. Wang, Z. Zhang, Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J. Mol. Catal. A 217(1–2), 203–210 (2004)

    Article  CAS  Google Scholar 

  44. S. Shin, M. Yonemura, H. Ikawa, Crystallographic properties of Ca2Fe2O5. Difference in crystallographic properties of brownmillerite-like compounds, Ca2Fe2O5 and Sr2Fe2O5, at elevated temperatures. Bull. Chem. Soc. Jpn. 52(3), 947–948 (1979)

    Article  CAS  Google Scholar 

  45. S. Shin, M. Yonemura, H. Ikawa, Order-disorder transition of Sr2Fe2O5 from brownmillerite to perovskite structure at an elevated temperature. Mater. Res. Bull. 13(10), 1017–1021 (1978)

    Article  CAS  Google Scholar 

  46. E.C. Okpara, O.E. Fayemi, Comparative study of spectroscopic and cyclic voltammetry properties of CuONPs from citrus peel extracts. Mater. Res. Express 6(10), 105056 (2019)

    Article  CAS  Google Scholar 

  47. V. Cascos, R. Martínez-Coronado, J. Alonso, M. Fernández-Díaz, Structural and electrical characterization of the Co-doped Ca2Fe2O5 brownmillerite: evaluation as SOFC-cathode materials. Int. J. Hydrog. Energy 40(15), 5456–5468 (2015)

    Article  CAS  Google Scholar 

  48. G.P. Wheeler, K.-S. Choi, Investigation of p-type Ca2Fe2O5 as a photocathode for use in a water splitting photoelectrochemical cell. ACS Appl. Energy Mater. 1(9), 4917–4923 (2018)

    Article  CAS  Google Scholar 

  49. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Butterworth-Heinemann, Oxford, 2013)

    Google Scholar 

  50. N. Almqvist, Fractal analysis of scanning probe microscopy images. Surf. Sci. 355(1–3), 221–228 (1996)

    Article  CAS  Google Scholar 

  51. H. Hosni, S. Fayek, S. El-Sayed, M. Roushdy, M. Soliman, Optical properties and DC electrical conductivity of Ge28−xSe72Sbx thin films. Vacuum 81(1), 54–58 (2006)

    Article  CAS  Google Scholar 

  52. N.A. Bakr, A. Funde, V. Waman, M. Kamble, R. Hawaldar, D. Amalnerkar, S. Gosavi, S. Jadkar, Determination of the optical parameters of a-Si: H thin films deposited by hot wire–chemical vapour deposition technique using transmission spectrum only. Pramana 76(3), 519–531 (2011)

    Article  CAS  Google Scholar 

  53. R. Chauhan, A.K. Srivastava, M. Mishra, K. Srivastava, Effect of UV exposure on some optical properties of As-Se based chalcogenide glasses. Integr. Ferroelectr. 119(1), 22–32 (2010)

    Article  CAS  Google Scholar 

  54. V.V. Tuchin, Tissue optics and photonics: light-tissue interaction. J. Biomed> Photonics Eng. 1(2), 98–134 (2015)

    Article  Google Scholar 

  55. J. Perraud, A. Obaton, J. Bou-Sleiman, B. Recur, H. Balacey, F. Darracq, J. Guillet, P. Mounaix, Terhertz imaging and tomography as efficient

  56. H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical Impedance Spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21(19), 6578 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. M. Mahdavian, M. Attar, Another approach in analysis of paint coatings with EIS measurement: phase angle at high frequencies. Corros. Sci. 48(12), 4152–4157 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian C. Onwudiwe.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or. personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okpara, E.C., Wojuola, O.B., Fayemi, O.E. et al. Sol–Gel Synthesis and Electrochemical Sensing Properties of Brownmillerite Calcium Ferrite–Ca2Fe2O5 Nanoparticles. J Inorg Organomet Polym 32, 3445–3458 (2022). https://doi.org/10.1007/s10904-022-02397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02397-8

Keywords

Navigation